General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.110CHP
Interpretation Introduction
Interpretation:
The amount of energy in kilojoules that is required when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the total amount of energy (in kJ) necessary to raise the temperature of 2.00 L of ethanol (density = 0.7849 g/cm3 ) from 18 0C to its boiling point (78.3 0C) and then fully vaporize the liquid. Assume that it is a closed system where no heat exchange with the surroundings takes place. (Given: Cethanol = 2.44 J/g·K; heat of vaporization of ethanol at 78.3 0C = 38.56 kJ/mol.)
1. The enthalpy of vaporization of methanol is 37.4 kJ/mol at
25°C. Molar heat capacities for liquid and gaseous methanol are
81.6 J/mol K and 43.9 J/mol·K respectively. Assume that heat
capacities are the constant in this temperature range. Calculate
the enthalpy of vaporization at
50 °C.
H2O has a ΔHvap = 40.8 kJ/mol and a ΔHfus = 6.02 kJ/mol. The specific heat capacity of ice is 2.11 J/g•°C, of liquid water is 4.18 J/g•°C and of steam is 2.00 J/g•°C. Calculate the total heat transferred to elevate 250 g of pure water from –42 °C to 127 °C.
Chapter 10 Solutions
General Chemistry: Atoms First
Ch. 10.1 - The dipole moment of HF is = 1.83 D, and the bond...Ch. 10.1 - Prob. 10.2PCh. 10.1 - Prob. 10.3CPCh. 10.1 - Prob. 10.4CPCh. 10.2 - Prob. 10.5PCh. 10.2 - Prob. 10.6PCh. 10.4 - Prob. 10.7PCh. 10.4 - Chloroform (CHCl3) has Hvap = 29.2 kJ/mol and Svap...Ch. 10.5 - Prob. 10.9PCh. 10.5 - Prob. 10.10P
Ch. 10.8 - Prob. 10.11PCh. 10.8 - Prob. 10.12PCh. 10.8 - Prob. 10.13PCh. 10.8 - Prob. 10.14CPCh. 10.9 - Prob. 10.15PCh. 10.9 - Prob. 10.16CPCh. 10.11 - Prob. 10.17PCh. 10.11 - Prob. 10.18PCh. 10.11 - Prob. 10.19CPCh. 10.11 - Prob. 10.20PCh. 10.11 - Prob. 10.21PCh. 10 - Prob. 10.22CPCh. 10 - Prob. 10.23CPCh. 10 - Zinc sulfide, or sphalerite, crystallizes in the...Ch. 10 - Perovskite, a mineral containing calcium, oxygen,...Ch. 10 - Prob. 10.26CPCh. 10 - Prob. 10.27CPCh. 10 - Prob. 10.28CPCh. 10 - Prob. 10.30CPCh. 10 - Prob. 10.31CPCh. 10 - Why dont all molecules with polar covalent bonds...Ch. 10 - Prob. 10.33SPCh. 10 - Prob. 10.34SPCh. 10 - Prob. 10.35SPCh. 10 - Methanol (CH3OH; bp = 65 C) boils nearly 230 C...Ch. 10 - Prob. 10.37SPCh. 10 - Which of the following substances would you expect...Ch. 10 - Prob. 10.39SPCh. 10 - Prob. 10.40SPCh. 10 - The dipole moment of ClF is 0.887 D and the...Ch. 10 - Prob. 10.42SPCh. 10 - Prob. 10.43SPCh. 10 - The class of ions PtX42, where X is a halogen, has...Ch. 10 - Prob. 10.45SPCh. 10 - Prob. 10.46SPCh. 10 - Prob. 10.47SPCh. 10 - Prob. 10.48SPCh. 10 - Prob. 10.49SPCh. 10 - Prob. 10.50SPCh. 10 - Prob. 10.51SPCh. 10 - Mercury has mp = 38.8 C and bp = 356.6 C. What, if...Ch. 10 - Prob. 10.53SPCh. 10 - Prob. 10.54SPCh. 10 - Prob. 10.55SPCh. 10 - Prob. 10.56SPCh. 10 - Prob. 10.57SPCh. 10 - Prob. 10.58SPCh. 10 - How much energy in kilojoules is released when...Ch. 10 - Draw a molar heating curve for ethanol, C2H5OH,...Ch. 10 - Prob. 10.61SPCh. 10 - Prob. 10.62SPCh. 10 - Prob. 10.63SPCh. 10 - Prob. 10.64SPCh. 10 - Prob. 10.65SPCh. 10 - Prob. 10.66SPCh. 10 - Prob. 10.67SPCh. 10 - Prob. 10.68SPCh. 10 - Prob. 10.69SPCh. 10 - Prob. 10.70SPCh. 10 - Prob. 10.71SPCh. 10 - Prob. 10.72SPCh. 10 - Prob. 10.73SPCh. 10 - Prob. 10.74SPCh. 10 - Prob. 10.75SPCh. 10 - Prob. 10.76SPCh. 10 - Which of the substances diamond, Hg, Cl2, glass,...Ch. 10 - Prob. 10.78SPCh. 10 - Prob. 10.79SPCh. 10 - Prob. 10.80SPCh. 10 - Prob. 10.81SPCh. 10 - Prob. 10.82SPCh. 10 - Prob. 10.83SPCh. 10 - Prob. 10.84SPCh. 10 - Prob. 10.85SPCh. 10 - Prob. 10.86SPCh. 10 - Prob. 10.87SPCh. 10 - Prob. 10.88SPCh. 10 - Sodium has a density of 0.971 g/cm3 and...Ch. 10 - Prob. 10.90SPCh. 10 - Prob. 10.91SPCh. 10 - Prob. 10.92SPCh. 10 - Prob. 10.93SPCh. 10 - Prob. 10.94SPCh. 10 - Prob. 10.95SPCh. 10 - Look at the phase diagram of CO2 in Figure 10.29,...Ch. 10 - Prob. 10.97SPCh. 10 - Prob. 10.98SPCh. 10 - Prob. 10.99SPCh. 10 - Prob. 10.100SPCh. 10 - Prob. 10.101SPCh. 10 - Does solid oxygen (Problem 10.99) melt when...Ch. 10 - Prob. 10.103SPCh. 10 - Prob. 10.104SPCh. 10 - Prob. 10.105SPCh. 10 - Prob. 10.106SPCh. 10 - Prob. 10.107SPCh. 10 - Prob. 10.108CHPCh. 10 - Prob. 10.109CHPCh. 10 - Prob. 10.110CHPCh. 10 - Prob. 10.111CHPCh. 10 - Prob. 10.112CHPCh. 10 - Prob. 10.113CHPCh. 10 - Prob. 10.114CHPCh. 10 - Prob. 10.115CHPCh. 10 - Magnesium metal has Hfusion = 9.037 kJ/mol and...Ch. 10 - Prob. 10.117CHPCh. 10 - Prob. 10.118CHPCh. 10 - Prob. 10.119CHPCh. 10 - Prob. 10.120CHPCh. 10 - Prob. 10.121CHPCh. 10 - Prob. 10.122CHPCh. 10 - Prob. 10.123CHPCh. 10 - Calculate the percent volume occupied by the...Ch. 10 - Prob. 10.125CHPCh. 10 - Prob. 10.126CHPCh. 10 - Prob. 10.127CHPCh. 10 - A drawing of the NaCl unit cell is shown in Figure...Ch. 10 - Niobium oxide crystallizes in the following cubic...Ch. 10 - Prob. 10.130CHPCh. 10 - One form of silver telluride (Ag2Te) crystallizes...Ch. 10 - Prob. 10.132CHPCh. 10 - Prob. 10.133MPCh. 10 - Prob. 10.134MPCh. 10 - A group 3A metal has a density of 2.70 g/cm3 and a...Ch. 10 - Prob. 10.136MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Liquid butane, C4H10, is stored in cylinders to be used as a fuel. Suppose 35.5 g of butane gas is removed from a cylinder. How much heat must be provided to vaporize this much gas? The heat of vaporization of butane is 21.3 kJ/mol.arrow_forwardCalculate the quantity of heating required to convert the water in four ice cubes (60.1 g each) from H2O(s) at 0 °C to H2O(g) at 100. °C. The enthalpy of fusion of ice is 333 J/g and the enthalpy of vaporization of liquid water is 2260 J/g.arrow_forwardA quantity of ice at 0C is added to 64.3 g of water in a glass at 55C. After the ice melted, the temperature of the water in the glass was 15C. How much ice was added? The heat of fusion of water is 6.01 kJ/mol and the specific heat is 4.18 J/(g C).arrow_forward
- A 0.250-g chunk of sodium metal is cautiously dropped into a mixture of 50.0 g water and 50.0 g ice, both at 0C. The reaction is 2Na(s)+2H2O(l)2NaOH(aq)+H2(g)H=368kJ Assuming no heat loss to the surroundings, will the ice melt? Assuming the final mixture has a specific heat capacity of 4.18 J/gc, calculate the final temperature. The enthalpy of fusion for ice is 6.02 kJ/mol.arrow_forwardExplain why the enthalpies of vaporization of the following substances increase in the order CH4NH3H2O, even though all three substances have approximately the same molar mass.arrow_forwardWhy are steam burns so much worse than water burns even if the H2O is at the same temperature for both phases? Hint: Consider the heat of vaporization of water.arrow_forward
- Follow the step-wise process outlined in Problem 31 to calculate the amount of heat involved in condensing 100.00 g of benzene gas (C6H6) at 80.00C to liquid benzene at 25.00C. Use Tables 8.1 and 8.2 for the specific heat, boiling point, and heat of vaporization of benzene.arrow_forwardHow much heat is released ( in J) when 54.0 g of water at 10.0 °C is cooled to form ice at -10.0 °C? Molar mass of H2O = 18.0 g/molSpecific heat capacity of H2O(s) = 2.09 J/g. °CSpecific heat capacity of H2O(l) = 4.18 J/g. °C∆Hfus= 6.02 kJ/molBoiling point of water is 100.0°CFreezing point of water is 0.0 °Carrow_forwardCalculate the total amount of energy (in kJ) necessary to raise the temperature of 2.00 L of ethanol (density= 0.7849 g/cm3) from 18 0C to its boiling point (78.3 0C) and then to fully vaporize the liquid. Assume thatit is a closed system where no heat exchange with the surroundings take place.(Given: Cethanol = 2.44 J/g·K; heat of vaporization of ethanol at 78.3 0 C = 38.56 kJ/mol.) Without converting C to kJ/g.arrow_forward
- A 10-g ice cube, initially at 0ºC, is melted in 100 g of water that was initially 20ºC. After the ice has melted, the equilibrium temperature is 10.93 ºC. Calculate The total heat lost by the water (the specific heat for water is 4.186 J/g·°C) .The heat gained by the ice cube after it melts (the specific heat for ice is 2.093 J/g·°C). The heat it took to melt the ice (Hint: It takes 334 J of heat energy to melt 1 g of ice). Inside a calorimeter is 100 g of water at 39.8ºC. A 10-g object at 50ºC is placed inside the calorimeter. When equilibrium has been reached, the new temperature of the water and metal object is 40ºC. What type of metal is the object made from? Hint: Use Table 1 in the Introduction for referencearrow_forwardA sample of C H Br, has a normal boiling temperature of 131.5 °C. The enthalpy of vaporization for this compound is 35.4 kJ/mol. 2 How much energy would be required to heat a 10.1 gram sample of liquid CH Br₂ from 97.5 °C to a gas at 187.2 °C? The specific heat for the liquid is 0.865 J/g °C and the specific heat for the gas is 0.364 J/g. °C. +arrow_forwardof an What amount of heat (in kJ) is required to convert 11.1 unknown solid (MM = 83.21 g/mol) at -5.00 °C to a liquid at 52.3 °C? (specific heat capacity of solid = 2.39 J/g•°C; specific heat capacity of liquid = 1.58 J/g.°C; AHfus = 3.72 kJ/mol; normal freezing point, Tf = 10.3°C) g %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY