Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.12P
To determine
The thickness of the lead shield.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Estimate the exposure rate 2 m from 4 Ci sources of 57Co,22Na,65Zn?Exposure Rate constant for 57Co=0.9 (R.cm2) / (hr.mCi)Exposure Rate constant for 22Na =12 (R.cm2) / (hr.mCi)Exposure Rate constant for 65Zn =2.7 (R.cm2) / (hr.mCi)
If the gamma-ray dose rate is 50 mSv hr-1 at a
distance of 1.0 m from a source, what is the dose rate
at a distance of 10 m from the source?
A worker will need to conduct a repair to a pipe containing radioactive waste. The pipe is 10 m
long, and the worker will need to be standing 50 cm from the pipe. A remote detector was
used to take a reading of 1.5 R/hr at 3 m from the pipe.
a) What is the dose rate at the work position?
b) If the worker's dose limit is 30 rad, how long will he have to complete the work?
Assume that there is no dose from approaching and leaving the work location.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Co-60 source gives a gamma dose rate of 120 μSv/h at 2.2 m away. At what distance (in meter) will the dose rate be 59 µSv/h? Provide your answer with 1 decimal place.arrow_forwardFrom the average of these values, determine the maximum number of hours you could work with this material in a year if the annual maximum permissible dose is 2.4 mSv and you count with 200 working days in a yeararrow_forward60Co is in an Iron container. The unshielded equivalent dose rate at 1 meterfrom the source is 2 mGy/h. What must be the thickness of Iron to meet thelegal limit of 100 μSv/h?.arrow_forward
- If the dose rate from a sample of Ra-223 was found to be 5.0 x 10-5 mSv per hour at 1.8 metres, calculate the dose rate at 4.8 metres. Show your calculations. Give your answer to two significant figures.arrow_forwardThe (effective) dose to a patient can be measured in milli-Serverts (mSv) or expressed as the time taken to receive the equivalent dose from background radiation. A certain radiograph gives a 1.232 mSv dose which is equivalent to a background radiation dose of 32 weeks.a)How many days in 32 weeks? Give your answer as a whole number. b)Using the information for the radiograph in this question, calculate the UK daily background dose (in mSv/day). Give your answer to 5 decimal places and use it to this accuracy, if needed in subsequent calculations. c)Another radiograph has a 0.0054 mSv dose. Work out the equivalent background dose (in days) for this radiograph. Give your answer to 2 decimal places and use it to this accuracy in any subsequent calculations. d)How many hours is the number of days in part c) equivalent to? Give your answer to 2 decimal places.arrow_forwardThe exposure rate at 1 meter from a point source of 10 mCi of 137CS is(r for 137CS is 3.3 R.cm2/mCi.hr)arrow_forward
- ✓ ON "O 2.75 MeV 0.511 MeV 0.511 MeV B, E= 1.73 MeV Eave = 0.721 Mev O MeVarrow_forwardQ1arrow_forwardry A 1-curie source is located just behind a shielding. If the shield has an HVL of 8 cm, how thick must the shielding be so that only 2 mCi reaches you- standing just on the other side? O 71.74 cm 78.98 cm O 88.54 cm O None of the given options. O 20.87 cm Question 10 At 3 ft from a source, the dose rate is 25 mrem/hr. How far away from the source should somebody so that the dose rate he receives is .01 mrem/hr? O None of the given options. O 125 feet O 100 feet 75 feet 2 ptsarrow_forward
- The dosage of technetium-99m for a lung scan is 20. µCi /kg of body mass. How many millicuries of technetium-99m should be given to a 49 kg person (1 mCi = 1000uCi)? Suppose a person absorbed 46 mrad of alpha radiation.What would be the equivalent dose in millirems?arrow_forwardA patient is exposed to 210 rad of gamma rays. What is the dose the patient receives in rem? Express your answer using two significant figures. Dose = Η ΜΕ ΑΣΦ Submit Request Answer 0 ? remarrow_forwardgiven 4hrs of 80dBA exposure ,2hrs of90 dBA exposure and 2hrs of 85 dBA exposure,what is the % dose? is this person overexposed to noisearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON