Concept explainers
(a)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(b)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(c)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(d)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
EBK CHEMISTRY
- You're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume densityarrow_forwardDraw a Lewis structure for each of the following species. Again, assign charges where appropriate. a. H-H¯ b. CH3-CH3 c. CH3+CH3 d. CH3 CH3 e. CH3NH3+CH3NH3 f. CH30-CH3O¯ g. CH2CH2 - h. HC2-(HCC) HC2 (HCC) i. H202×(HOOH) H₂O₂ (HOOH) Nortonarrow_forwardIs molecule 6 an enantiomer?arrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardUse the vapor-liquid equilibrium data at 1.0 atm. for methanol-water (Table 2-8 ) for the following: If the methanol vapor mole fraction is 0.600, what is the methanol liquid mole fraction? Is there an azeotrope in the methanol-water system at a pressure of 1.0 atmospheres? If water liquid mole fraction is 0.350, what is the water vapor mole fraction? What are the K values of methanol and of water at a methanol mole fraction in the liquid of 0.200? What is the relative volatility αM-W at a methanol mole fraction in the liquid of 0.200?arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. || |II***** Molecule 1 | Molecule 4 none of the above Molecule 2 Molecule 3 Х mm... C ---||| *** Molecule 5 Molecule 6arrow_forward
- is SiBr4 Silicon (IV) tetra Bromine? is KClO2 potassium dihypochlorite ?arrow_forward"יוון HO" Br CI Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 Br Br Br HO OH H CI OH ✓ Molecule 4 Molecule 5 Molecule 6 CI Br יייון H Br OH OH CI Br ☐ none of the above × Garrow_forwardUS2 Would this be Uranium (II) diSulfide?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY