![EBK CHEMISTRY](https://www.bartleby.com/isbn_cover_images/8220102797857/8220102797857_largeCoverImage.jpg)
Concept explainers
The molecules cis-dichloroethylene and trans-dichloroethylene shown in Section 10.2 can be interconverted by heating or irradiation. (a) Starting with cis-dichloroethylene, show that rotating the C═C bond by 180° will break only the pi bond but will leave the sigma bond intact. Explain the formation of trans-dichloroethylene from this process. (Treat the rotation as two stepwise 90° rotations.) (b) Account for the difference in the bond enthalpies for the pi bond (about 270 kJ/mol) and the sigma bond (about 350 kJ/mol). (c) Calculate the longest
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
In 1,2-dichloroethylene,while rotating the
Concept Introduction:
Rotation of 1,2-dichloroethylene:
1,2-dichloroethylene has two distinct isomers such as cis- and trans- isomers. The double bond between the two carbon atoms will have one sigma bond and one pi- bond. During
Explanation of Solution
It is known that sigma bond is formed by end-to-end overlap. So, rotation about
(b)
![Check Mark](/static/check-mark.png)
Interpretation: The difference in the bond enthalpies for the pi and the sigma bond has to be accounted.
Concept Introduction:
Bond enthalpy is the amount of energy required to break one mole of a particular type of bond. Hence, bond enthalpy decides the bond strength.
Trends of bond enthalpy:
The larger bond enthalpy value for a type of bond means that the bond requires more energy for breaking it which implies that the particular bond is being a strong bond. Whereas the smaller bond enthalpy value for a type of bond means that the bond requires less energy for breaking it which implies that the particular bond is being a weak bond.
Explanation of Solution
The bond enthalpy for the sigma bond is given as
The bond enthalpy for the pi bond is given as
Clearly, the bond enthalpy value of sigma bond is being higher than that of the pi bond. This difference in the bond enthalpy implies the difference in the bond strength. From this information it can be concluded that sigma bond is stronger bond whereas pi-bond is weaker bond. It is known that sigma bond is formed by end-to-end overlap whereas pi-bond is formed by sideways overlap. The extent of the sideways overlap is less than the end-to-end overlap. Hence, pi-bond is weaker than the sigma bond.
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
In the conversion 1,2-dichloroethylene from cis- to trans-form, the longest wavelength of light needed to bring about the conversion, has to be calculated.
Concept Introduction:
In 1,2-dichloroethylene , conversion from cis- to trans- can be achieved by the rotation of the double bond for about
Rotation of 1,2-dichloroethylene:
1,2-dichloroethylene has two distinct isomers such as cis- and trans- isomers. The double bond between the two carbon atoms will have one sigma bond and one pi- bond. During
The longest wavelength of light needed to bring about the conversion, can be calculated using the formula shown below:
Answer to Problem 10.108QP
The longest wavelength of light that is needed for the isomeric conversion of 1,2-dichloroethylene is
Explanation of Solution
For the conversion from cis- to trans-form in 1,2-dichloroethylene, it is known that only the breaking of pi-bond brings the conversion. The bond enthalpy value of pi-bond is the amount of energy required to break the pi-bond. The bond enthalpy value of pi-bond is
Converting the bond enthalpy value from
Converting the bond enthalpy value from
This is the energy required to for the conversion of cis-to trans-form in one molecule. The wavelength corresponding to this energy can be calculated using the formula as follows:
Substituting all the known values in the formula and evaluating it:
Converting the wavelength from meter into nanometre:
Therefore,
The longest wavelength of light that is needed for the isomeric conversion of 1,2-dichloroethylene, has been calculated.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY
- Question 7 (10 points) Identify the carboxylic acid present in each of the following items and draw their structures: Food Vinegar Oranges Yogurt Sour Milk Pickles Acid Structure Paragraph ✓ BI UAE 0118 + v Task: 1. Identify the carboxylic acid 2. Provide Name 3. Draw structure 4. Take a picture of your table and insert Add a File Record Audio Record Video 11.arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 IZ IN Molecule 4 Molecule 5 ZI none of the above ☐ Molecule 3 Х IN www Molecule 6 NH Garrow_forwardHighlight each chiral center in the following molecule. If there are none, then check the box under the drawing area. There are no chiral centers. Cl Cl Highlightarrow_forward
- A student proposes the following two-step synthesis of an ether from an alcohol A: 1. strong base A 2. R Is the student's proposed synthesis likely to work? If you said the proposed synthesis would work, enter the chemical formula or common abbreviation for an appropriate strong base to use in Step 1: If you said the synthesis would work, draw the structure of an alcohol A, and the structure of the additional reagent R needed in Step 2, in the drawing area below. If there's more than one reasonable choice for a good reaction yield, you can draw any of them. ☐ Click and drag to start drawing a structure. Yes No ロ→ロ 0|0 G Х D : ☐ பarrow_forwardटे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forwardShown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forward
- Predict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forwardNG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)