
(a)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (a) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(b)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (b) 500 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(c)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (c) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)

Trending nowThis is a popular solution!

Chapter 1 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Complete the mechanismarrow_forwardV Biological Macromolecules Drawing the Haworth projection of an aldose from its Fischer projection Draw a Haworth projection of a common cyclic form of this monosaccharide: H C=O HO H HO H H OH CH₂OH Explanation Check Click and drag to start drawing a structure. Xarrow_forwardComplete the mechanismarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





