General Chemistry
General Chemistry
4th Edition
ISBN: 9781891389603
Author: Donald A. McQuarrie, Peter A. Rock, Ethan B. Gallogly
Publisher: University Science Books
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1.5P

(a)

Interpretation Introduction

Interpretation:

The number 0.0000000277 has to be expressed in terms of scientific notation.

Concept Introduction:

In scientific work, large and very small numbers occurs frequently.  But it is been observed that, to record these vast numbers or very small numbers is difficult because, the numbers may get missed while recording them.  It is time consuming and the possibilities of error occurrence are also high.  Hence to overcome these demerits, a method called scientific notation is used.  Scientific notation is a numerical system where a decimal number is expressed as product of two number between 1 and 10 (coefficient) and 10 that is raised to power (exponential term).  In this method the numbers are expressed in form of “A x 10n, where A is called the co-efficient, n is the whole number and 10 is called the exponential term.  This way of expressing is much easier and error free.  If the decimal number is 10 or greater than 10, then the exponent is positive and if the decimal number is less than 1, then the exponent is negative.

(b)

Interpretation Introduction

Interpretation:

The number 0.00182 has to be expressed in terms of scientific notation.

Concept Introduction:

Refer part (a).

(c)

Interpretation Introduction

Interpretation:

The number 123000000 has to be expressed in terms of scientific notation.

Concept Introduction:

Refer part (a).

(d)

Interpretation Introduction

Interpretation:

The number 1254 has to be expressed in terms of scientific notation.

Concept Introduction:

Refer part (a).

Blurred answer
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10

Chapter 1 Solutions

General Chemistry

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Measurement and Significant Figures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Gn97hpEkTiM;License: Standard YouTube License, CC-BY
Trigonometry: Radians & Degrees (Section 3.2); Author: Math TV with Professor V;https://www.youtube.com/watch?v=U5a9e1J_V1Y;License: Standard YouTube License, CC-BY