Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.56P
The device in Fig. P1.56 is called a cone-plate viscometer [29]. The angle of the cone is very small, so that sin
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hurry up plz
In falling ball viscometer experiment, the viscometer with a calibration factor K=0.3 is used to measure the
viscosity of oil with density p= 0.8 gr/cm3 and the density of Tantalum ball is 16.6 gr/cm3, if the ball is
observed to fall 250 mm in time = 103.3 sec. What is the viscosity of the oil (in cp)?
The Ekman number, Ek, arises in geophysical fluiddynamics. It is a dimensionless parameter combining seawaterdensity ρ , a characteristic length L , seawaterviscosity μ , and the Coriolis frequency Ω sin φ , where Ωis the rotation rate of the earth and φ is the latitude angle.Determine the correct form of Ek if the viscosity is in thenumerator.
Chapter 1 Solutions
Fluid Mechanics
Ch. 1 - Prob. 1.1PCh. 1 - Table A.6 lists the density of the standard...Ch. 1 - For the triangular element in Fig, P1.3,show that...Ch. 1 - Sand, and other granular materials, appear to...Ch. 1 - The mean free path of a gas, l, is defined as the...Ch. 1 - Henri Darcy, a French engineer, proposed that the...Ch. 1 - Convert the following inappropriate quantities...Ch. 1 - Suppose we know little about the strength of...Ch. 1 - A hemispherical container, 26 inches in diameter,...Ch. 1 - The Stokes-Oseen formula [33] for drag force F on...
Ch. 1 - P1.11 In English Engineering units, the specific...Ch. 1 - For low-speed (laminar) steady flow through a...Ch. 1 - The efficiency ? of a pump is defined as the...Ch. 1 - Figure P1.14 shows the flow of water over a dam....Ch. 1 - The height H that fluid rises in a liquid...Ch. 1 - Algebraic equations such as Bernoulli's relation,...Ch. 1 - The Hazen-Williams hydraulics formula for volume...Ch. 1 - For small particles at low velocities, the first...Ch. 1 - In his study of the circular hydraulic jump formed...Ch. 1 - Books on porous media and atomization claim that...Ch. 1 - Aeronautical engineers measure the pitching moment...Ch. 1 - Prob. 1.22PCh. 1 - During World War II, Sir Geoffrey Taylor, a...Ch. 1 - Air, assumed to be an ideal gas with k = 1.40,...Ch. 1 - On a summer day in Narragansett, Rhode Island, the...Ch. 1 - When we in the United States say a car's tire is...Ch. 1 - Prob. 1.27PCh. 1 - Wet atmospheric air at 100 percent relative...Ch. 1 - Prob. 1.29PCh. 1 - P1.30 Repeat Prob. 1.29 if the tank is filled with...Ch. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - A tank contai as 9 kg of CO2at 20°C and 2.0 MPa....Ch. 1 - Consider steam at the following state near the...Ch. 1 - In Table A.4, most common gases (air, nitrogen,...Ch. 1 - Prob. 1.36PCh. 1 - A near-ideal gas has a molecular weight of 44 and...Ch. 1 - In Fig. 1.7, if the fluid is glycerin at 20°C and...Ch. 1 - Prob. 1.39PCh. 1 - Glycerin at 20°C fills the space between a hollow...Ch. 1 - An aluminum cylinder weighing 30 N, 6 cm in...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - One type of viscometer is simply a long capillary...Ch. 1 - A block of weight W slides down an inclined plane...Ch. 1 - A simple and popular model for two nonnewtonian...Ch. 1 - Data for the apparent viscosity of average human...Ch. 1 - A thin plate is separated from two fixed plates by...Ch. 1 - An amazing number of commercial and laboratory...Ch. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - The belt in Fig. P1.52 moves at a steady velocity...Ch. 1 - A solid tune of angle 2 , base r0, and density...Ch. 1 - A disk of radius R rotates at an angular velocity ...Ch. 1 - A block of weight W is being pulled over a table...Ch. 1 - The device in Fig. P1.56 is called a cone-plate...Ch. 1 - Extend the steady flow between a fixed lower plate...Ch. 1 - The laminar pipe flow example of Prob. 1.12 can be...Ch. 1 - A solid cylinder of diameter D, length L, and...Ch. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - P1.62 The hydrogen bubbles that produced the...Ch. 1 - Derive Eq. (1.33) by making a force balance on the...Ch. 1 - Pressure in a water container can be measured by...Ch. 1 - The system in Fig. P1.65 is used to calculate the...Ch. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - A solid cylindrical needle of diameter d, length...Ch. 1 - Derive an expression for the capillary height...Ch. 1 - A soap bubble of diameter D1coalesces with another...Ch. 1 - Early mountaineers boiled water to estimate their...Ch. 1 - A small submersible moves al velocity V, in fresh...Ch. 1 - Oil, with a vapor pressure of 20 kPa, is delivered...Ch. 1 - An airplane flies at 555 mi/h. At what altitude in...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - P1.78 Sir Isaac Newton measured the speed of sound...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Use Eq. (1.39) to find and sketch the streamlines...Ch. 1 - P1.82 A velocity field is given by u = V cos, v =...Ch. 1 - Prob. 1.83PCh. 1 - In the early 1900s, the British chemist Sir Cyril...Ch. 1 - Prob. 1.85PCh. 1 - A right circular cylinder volume v is to be...Ch. 1 - The absolute viscosity of a fluid is primarily a...Ch. 1 - Prob. 1.2FEEPCh. 1 - Helium has a molecular weight of 4.003. What is...Ch. 1 - An oil has a kinematic viscosity of 1.25 E-4 m2/s...Ch. 1 - Prob. 1.5FEEPCh. 1 - Prob. 1.6FEEPCh. 1 - FE1.7 Two parallel plates, one moving at 4 m/s...Ch. 1 - Prob. 1.8FEEPCh. 1 - A certain water flow at 20°C has a critical...Ch. 1 - Prob. 1.10FEEPCh. 1 - Sometimes we can develop equations and solve...Ch. 1 - When a person ice skates, the surface of the ice...Ch. 1 - Two thin flat plates, tilted at an angle a, are...Ch. 1 - Oil of viscosity and density drains steadily...Ch. 1 - Prob. 1.5CPCh. 1 - Prob. 1.6CPCh. 1 - Prob. 1.7CPCh. 1 -
C1.8 A mechanical device that uses the rotating...Ch. 1 - Prob. 1.9CPCh. 1 - A popular gravity-driven instrument is the...Ch. 1 - Mott [Ref. 49, p. 38] discusses a simple...Ch. 1 - A solid aluminum disk (SG = 2.7) is 2 in in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A concentric cylinder viscometer is driven by a falling mass M connected by a cord and pulley to the inner cylinder. Annular gap of width a and height H has been filled with liquid to be tested. The speed of the falling mass is Vm. Develop an algebraic expression for the viscosity of the liquid. Evaluate the viscosity of the liquid using M= 0.1 Kg, R=50mm, H=80 mm, r=25mm, a=0.20mm and Vm = 94arrow_forwardNonearrow_forwardPlease answer only when you are sure and give correct answer Thedensity of an oil at 23°C is 750kg / (m ^ 3) Find its relative density and kinematic viscosity if the dynamic viscosity is 5 * 10 ^ - 3 * kg / m * s .arrow_forward
- The sliding plate viscometer shown below is used to measure the viscosity of a fluid. The top plate is moving to the right with a constant velocity of 10 m s in response to a force of 3 N. The bottom plate is stationary. What is the viscosity of the fluid? Assume a linear velocity distribution.arrow_forwardA rotating cup viscometer has an inner cylinder diameter of 50.8mm, and the gap between cups is 5.08mm. The inner cylinder length is 63.5mm. The viscometer is used to obtain viscosity data on a Newtonian liquid. When the inner cylinder rotates at 10 rev/min, the torque on the inner cylinder is measured to be 0.01243mN - m. Calculate the viscosity of the fluid. If the fluid density is 850 kg/ m^3, calculate the kinematic viscosity.arrow_forwardFind the kinematic viscosity of an oil having density of 980kg/m^2 when at a certain point in the oil, the shear stress is 0.25 Pa and the velocity gradient is 0.3 m/s.arrow_forward
- The kinematic viscosity of a liquid is 0.058 cm^2/s and has a density of 500 kg/m^3. What is the absolute viscosity in poisearrow_forwardTutorial Problem #3. As we discussed in lecture, a concentric cylinder viscometer is often used to measure the viscosity (μ) of Newtonian fluids. As shown in the accompanying figure, the outer cylinder (with radius Ro) remains stationary while the inner cylinder (with radius R₁) rotates at an angular velocity of w (rev/min) and the torque (T) required to rotate the inner cylinder is measured. Outer Cylinder Fluid Inner Cylinder T ω R₁ R a. Starting from Newton's law of viscosity, derive the correct equation that is used to calculate u in μ terms of w, T, Ro, R₁ and € (the height of the fluid in the gap between the two cylinders). Because the radial distance between the cylinders (i.e Ro - R₁) is quite small, you can assume that the velocity profile of the fluid varies linearly with respect to distance between the cylinders. HINT #1: Torque is the required force multiplied by the moment arm (which is R¡ in this case) HINT #2: Multiply the angular velocity by the circumference of the…arrow_forwardThe following figure shows the diametral cross-section of a viscometer, whichconsists of two opposed circular horizontal disks, each of radius R, spaced by a verticaldistance H; the intervening gap is filled by a liquid of constant viscosity μ and constantdensity. The upper disk is stationary, and the lower disk is rotated at a steady angular velocityω in the θ direction.(a) There is only one nonzero velocity component, vθ, so the liquid everywheremoves in circles. Simplify the general continuity equation in cylindrical coordinates andhence deduce those coordinates (r, θ, z) on which vθ may depend. (b) Now consider the θ-momentum equation and simplify it by eliminating all zeroterms. Explain briefly why you would expect ∂P/∂θ to be zero and why you cannotneglect the term ∂2vθ /∂z2(c) Suppose that the velocity in the θ direction is of the form vθ = ωrf(z), where thefunction f(z) is yet to be determined. Substitute it into the simplified θ-momentumbalance and determine f(z), using the…arrow_forward
- Q.1 A simple and accurate viscometer can be made from a length of capillary tubing. If the flow rate and pressure drop are measured, and the tube geometry is known, the viscosity of Newtonian liquid can be computed. A test of a certain liquid in a capillary viscometer gave the following data: Flow rate: 880 mm /s, Tube length: 1 m, ,3, Tube diameter: 0.50 mm, Pressure drop: 1.0 MPа The viscosity of liquid will be (pig =999 kg/m:), assuming the flow to be laminar. A 0.37x10*Ns/m В 3.7x10* Ns/m 1.74x10* Ns/m C 1.74x10* Ns/marrow_forwardQ1. A concentric cylinder viscometer is driven by a falling mass M connected by a cord and pulley to the inner cylmder. Annular gap of width a and height H has been filled with liquid to be tested. The speed of the falling mass is Vim. Develop an algebraic expression for the viscosity of the liquid. Evaluate the viscosity of the liquid using M= 0.1 Kg, R=50mm, H=80 mm, r-25mm, =0.20mm and Vim = 30 + ww XX Cord Puliey,arrow_forwardWhen a clean glass tube with a diameter of 2 mm is immersed in water at 20 ° C, how many mm will the capillary rise occur in the glass tube? For water at 20 ° C, surface tension is given as 0.073 N / m, density 1000 kg / m3, contact angle 0 ° C and gravitational acceleration 10 m / s2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License