Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.55P
A block of weight W is being pulled over a table by another weight W0, as shown in Kg. P1.55. Find an algebraic formula for the steady velocity U of the block if it slides on an oil film of thickness h and viscosity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A square block has 320 mm bottom sides dimensions, weighing W is 1.4 kN
on an edge slides down an incline angle 0 is 20° on a film of oil 6 mm
thickness, as shown below. Assuming a linear velocity profile in the oil. The
viscosity of the oil is 0.009 Pa.s.
W
y
Determine the force acting on the block, F.
What is the velocity of the block, V?
A lubricating oil having the dynamic viscosity of 0.051 poise and specific gravity of 1.12. Calculate (i) the density of oil in kg/m3, (ii) the weight density of oil in N/m3,(iii) the kinematic viscosity in stokes, and (iv) the specific volume in m3/kg.
Q2) A block of weight W slides down an inclined plane on a thin film of oil with
terminal velocity V, as shown in Figure Q2, and thus a shear stress will be existed (t).
The film contact area is A and its thickness h, oil viscosity u and incline angle 0.
Assuming a linear velocity distribution in the film, prove that the analytic expression for
the terminal velocity can be V=(hWcos0) /Aµ.
For both Group 1 and Group 2
Oil film,
thickness h
Figure Q2
Chapter 1 Solutions
Fluid Mechanics
Ch. 1 - Prob. 1.1PCh. 1 - Table A.6 lists the density of the standard...Ch. 1 - For the triangular element in Fig, P1.3,show that...Ch. 1 - Sand, and other granular materials, appear to...Ch. 1 - The mean free path of a gas, l, is defined as the...Ch. 1 - Henri Darcy, a French engineer, proposed that the...Ch. 1 - Convert the following inappropriate quantities...Ch. 1 - Suppose we know little about the strength of...Ch. 1 - A hemispherical container, 26 inches in diameter,...Ch. 1 - The Stokes-Oseen formula [33] for drag force F on...
Ch. 1 - P1.11 In English Engineering units, the specific...Ch. 1 - For low-speed (laminar) steady flow through a...Ch. 1 - The efficiency ? of a pump is defined as the...Ch. 1 - Figure P1.14 shows the flow of water over a dam....Ch. 1 - The height H that fluid rises in a liquid...Ch. 1 - Algebraic equations such as Bernoulli's relation,...Ch. 1 - The Hazen-Williams hydraulics formula for volume...Ch. 1 - For small particles at low velocities, the first...Ch. 1 - In his study of the circular hydraulic jump formed...Ch. 1 - Books on porous media and atomization claim that...Ch. 1 - Aeronautical engineers measure the pitching moment...Ch. 1 - Prob. 1.22PCh. 1 - During World War II, Sir Geoffrey Taylor, a...Ch. 1 - Air, assumed to be an ideal gas with k = 1.40,...Ch. 1 - On a summer day in Narragansett, Rhode Island, the...Ch. 1 - When we in the United States say a car's tire is...Ch. 1 - Prob. 1.27PCh. 1 - Wet atmospheric air at 100 percent relative...Ch. 1 - Prob. 1.29PCh. 1 - P1.30 Repeat Prob. 1.29 if the tank is filled with...Ch. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - A tank contai as 9 kg of CO2at 20°C and 2.0 MPa....Ch. 1 - Consider steam at the following state near the...Ch. 1 - In Table A.4, most common gases (air, nitrogen,...Ch. 1 - Prob. 1.36PCh. 1 - A near-ideal gas has a molecular weight of 44 and...Ch. 1 - In Fig. 1.7, if the fluid is glycerin at 20°C and...Ch. 1 - Prob. 1.39PCh. 1 - Glycerin at 20°C fills the space between a hollow...Ch. 1 - An aluminum cylinder weighing 30 N, 6 cm in...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - One type of viscometer is simply a long capillary...Ch. 1 - A block of weight W slides down an inclined plane...Ch. 1 - A simple and popular model for two nonnewtonian...Ch. 1 - Data for the apparent viscosity of average human...Ch. 1 - A thin plate is separated from two fixed plates by...Ch. 1 - An amazing number of commercial and laboratory...Ch. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - The belt in Fig. P1.52 moves at a steady velocity...Ch. 1 - A solid tune of angle 2 , base r0, and density...Ch. 1 - A disk of radius R rotates at an angular velocity ...Ch. 1 - A block of weight W is being pulled over a table...Ch. 1 - The device in Fig. P1.56 is called a cone-plate...Ch. 1 - Extend the steady flow between a fixed lower plate...Ch. 1 - The laminar pipe flow example of Prob. 1.12 can be...Ch. 1 - A solid cylinder of diameter D, length L, and...Ch. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - P1.62 The hydrogen bubbles that produced the...Ch. 1 - Derive Eq. (1.33) by making a force balance on the...Ch. 1 - Pressure in a water container can be measured by...Ch. 1 - The system in Fig. P1.65 is used to calculate the...Ch. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - A solid cylindrical needle of diameter d, length...Ch. 1 - Derive an expression for the capillary height...Ch. 1 - A soap bubble of diameter D1coalesces with another...Ch. 1 - Early mountaineers boiled water to estimate their...Ch. 1 - A small submersible moves al velocity V, in fresh...Ch. 1 - Oil, with a vapor pressure of 20 kPa, is delivered...Ch. 1 - An airplane flies at 555 mi/h. At what altitude in...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - P1.78 Sir Isaac Newton measured the speed of sound...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Use Eq. (1.39) to find and sketch the streamlines...Ch. 1 - P1.82 A velocity field is given by u = V cos, v =...Ch. 1 - Prob. 1.83PCh. 1 - In the early 1900s, the British chemist Sir Cyril...Ch. 1 - Prob. 1.85PCh. 1 - A right circular cylinder volume v is to be...Ch. 1 - The absolute viscosity of a fluid is primarily a...Ch. 1 - Prob. 1.2FEEPCh. 1 - Helium has a molecular weight of 4.003. What is...Ch. 1 - An oil has a kinematic viscosity of 1.25 E-4 m2/s...Ch. 1 - Prob. 1.5FEEPCh. 1 - Prob. 1.6FEEPCh. 1 - FE1.7 Two parallel plates, one moving at 4 m/s...Ch. 1 - Prob. 1.8FEEPCh. 1 - A certain water flow at 20°C has a critical...Ch. 1 - Prob. 1.10FEEPCh. 1 - Sometimes we can develop equations and solve...Ch. 1 - When a person ice skates, the surface of the ice...Ch. 1 - Two thin flat plates, tilted at an angle a, are...Ch. 1 - Oil of viscosity and density drains steadily...Ch. 1 - Prob. 1.5CPCh. 1 - Prob. 1.6CPCh. 1 - Prob. 1.7CPCh. 1 -
C1.8 A mechanical device that uses the rotating...Ch. 1 - Prob. 1.9CPCh. 1 - A popular gravity-driven instrument is the...Ch. 1 - Mott [Ref. 49, p. 38] discusses a simple...Ch. 1 - A solid aluminum disk (SG = 2.7) is 2 in in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- When a clean glass tube with a diameter of 2 mm is immersed in water at 20 ° C, how many mm will the capillary rise occur in the glass tube? For water at 20 ° C, surface tension is given as 0.073 N / m, density 1000 kg / m3, contact angle 0 ° C and gravitational acceleration 10 m / s2.arrow_forwardA block of mass m slides along a horizontal surface lubricated with a thick oil which providesa drag force proportional to the square root of velocity.F_d=-bv^1/2If v = v0 at t = 0, determine v as a function of timearrow_forwardThe belt in Fig. 2, moves at a steady velocity V in the tank of oil , as shown. Assuming a linear velocity profile in the oil, determine the force F required to belt-drive at velocity of 7 m/s. if you know that the viscosity of oil is 0.29 kg/(m.s). *arrow_forward
- 1 (a) A plate 0.05mm distant from a fixed plate moves at 1.15 m/s and required a force per unit area of 2.7 N/m2 to maintain this speed with using an oil of specific gravity 0.75. Find the dynamic viscosity and kinematic viscosity of the fluid between the plates. 1 (b) Calculate the specific weight, density, and the specific gravity of a liquid having a volume of 665150 cm³ and weight of 71 kN (ENTER ONLY THE VALUES BY REFERRING THE UNITS GIVEN) 1 (a) The dynamic viscosity of the fluid (in Centipoise) The kinematic viscosity of the fluid (in stokes) 1 (b) Specific Weight in (kN/m3) Density of liquid (in kg/m2) Specific gravity of liquid Windows buarrow_forwardThe property of a fluid called viscosity is related to its internal friction and resistance to being deformed. The viscosity of water, for instance, is less than that of molasses and honey, just as the viscosity of light motor oil is less than that of grease. A unit used in mechanical engineering to describe viscosity is called the poise, named after the physiologist Jean Louis Poiseuille, who performed early experiments in fluid mechanics. The unit is defined by 1 poise = 0.1 (N s)/m2. Show that 1 poise is also equivalent to 1 g/(cm · s). %3Darrow_forwardThe sliding plate viscometer shown below is used to measure the viscosity of a fluid. The top plate is moving to the right with a constant velocity of 10 m s in response to a force of 3 N. The bottom plate is stationary. What is the viscosity of the fluid? Assume a linear velocity distribution.arrow_forward
- 1 (a) A plate 0.05mm distant from a fixed plate moves at 1.15 m/s and required a force per unit area of 3.2 N/m? to maintain this speed with using an oil of specific gravity 0.8. Find the dynamic viscosity and kinematic viscosity of the fluid between the plates. 1 (b) Calculate the specific weight, density, and the specific gravity of a liquid having a volume of 663050 cm and weight of 67 kN (ENTER ONLY THE VALUES BY REFERRING THE UNITS GIVEN) 1 (a) The dynamic viscosity of the fluid (in Centipoise) The kinematic viscosity of the fluid (in stokes) 1 (b) Specific Weight in (kN/m³) Density of liquid (in kg/m³) Specific gravity of liquidarrow_forwardAn airplane that has a cross-sectional diameter D = 4 m of the front portion is to fly at a speed of 600 km/hr in air that has a density of 1.1 kg/m and dynamic viscosity of 1.27 x 10 Pa.s. A small size model of scale ratio (1/17) to be tested in a different fluid that has a dynamic viscosity 5 x 105 Pa .s and a density of 500 kg/m2. It is determined that the parameters that are important for this test are: diameter D, density, viscosity, velocity V, the length of the wings L and the drag force F. What must be the speed (m/s) of the model to Choose... ensure dynamical similitude? What must be the corresponding diameter of the model (cm)? Choose.. What is the number/s of dimensionless groups for this problem? Choose...arrow_forward1 (a) A plate 0.05mm distant from a fixed plate moves at 1.15 m/s and required a force per unit area of 3.2 N/m? to maintain this speed with using an oil of specific gravity 0.7. Find the dynamic viscosity and kinematic viscosity of the fluid between the plates. 1 (b) Calculate the specific weight, density, and the specific gravity of a liquid having a volume of 662000 cm3 and weight of 64 kNarrow_forward
- There is oil (dynamic viscosity = 1.6 Pa.s), oil film thickness (h = 0.7 mm) between a block with mass M (5 kg) and the bottom surface. Block base surface Its area is given as A = 28 cm2. Block m (1kg weight) with a wire rope It depends on the mass. At time t = 0, mass m is released. According to these data; a)Find the viscous forces when the block moves with V = 1 m / s velocity. b)Derive an equation for the block velocity as a function of time (t). c)Plot the velocity-time variation for t = 0 and t = t.arrow_forwardQ1arrow_forwardC1 (a). A lubricating oil having the dynamic viscosity of 0.058 poise and specific gravity of 1.11. Calculate (i) the density of oil in kg/m3, (ii) the weight density of oil in N/m3,(iii) the kinematic viscosity in stokes, and (iv) the specific volume in m³/kg. C1 (b). The capillary effect in a glass tube of 2.6 mm diameter, when immersed in (1) water and (2) mercury are 7.4 mm and -3.5 mm respectively. Calculate the value of surface tension in contact with air for water and mercury in N/m. Take, the contact angle for water =0° and mercury =130°. C1(a).(i).the density of oil in kg/m3 C1(a). (ii) the weight density of oil in N/m3 C1(a). (iii) the kinematic viscosity in stokes C1(a). (iv) the specific volume in m³/kg C1 (b). 1.the value of surface tension (water) in N/m C1 (b). 2. the value of surface tension (mercury) in N/marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY