What is the impact of new km value 0.1mM compared to previous km value 0.05mM on affinity of the enzyme for substrate?
What is the impact of new km value 0.1mM compared to previous km value 0.05mM on affinity of the enzyme for substrate?
Biochemistry
9th Edition
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Chapter1: Biochemistry: An Evolving Science
Section: Chapter Questions
Problem 1P
Related questions
Question
What is the impact of new km value 0.1mM compared to previous km value 0.05mM on affinity of the enzyme for substrate?
![**Fig. 9: Michaelis-Menten Plot Explanation**
In this section, we explore a Michaelis-Menten plot generated using a value of 0.1 mM for \( K_m \).
### Observations:
1. **Data Recalculation**: A new set of calculated values is displayed in column C of the spreadsheet. These values stem from a new \( K_m \) value.
2. **Generated New Best-Fit**: By utilizing these recalculated data points, a new best-fit Michaelis-Menten curve (in red) is created on the graph.
### Graph/Diagram Details:
- **Data Table**: Contains numerical values used to plot the graph, showing substrate concentrations and corresponding reaction velocities.
- **Graph**:
- **Axes**: Depicts reaction velocity (V) on the Y-axis and substrate concentration ([S]) on the X-axis.
- **Data Points**: Blue dots represent the individual data points plotted from the table values.
- **Red Curve**: Illustrates the Michaelis-Menten fit generated from the new data. This curve demonstrates how well the data align with the expected enzyme kinetics model.
### Conclusion:
The newly adjusted data and the corresponding graph provide insights into enzyme-catalyzed reactions under different conditions. The red curve fit signifies improved alignment with theoretical predictions, showcasing the powerful application of the Michaelis-Menten equation in enzymology.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5ef5f725-b08b-4f71-a80c-f37e47d07785%2F23f1a570-f50b-49bd-accf-a98d01d4a902%2Fz5ut4u6_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Fig. 9: Michaelis-Menten Plot Explanation**
In this section, we explore a Michaelis-Menten plot generated using a value of 0.1 mM for \( K_m \).
### Observations:
1. **Data Recalculation**: A new set of calculated values is displayed in column C of the spreadsheet. These values stem from a new \( K_m \) value.
2. **Generated New Best-Fit**: By utilizing these recalculated data points, a new best-fit Michaelis-Menten curve (in red) is created on the graph.
### Graph/Diagram Details:
- **Data Table**: Contains numerical values used to plot the graph, showing substrate concentrations and corresponding reaction velocities.
- **Graph**:
- **Axes**: Depicts reaction velocity (V) on the Y-axis and substrate concentration ([S]) on the X-axis.
- **Data Points**: Blue dots represent the individual data points plotted from the table values.
- **Red Curve**: Illustrates the Michaelis-Menten fit generated from the new data. This curve demonstrates how well the data align with the expected enzyme kinetics model.
### Conclusion:
The newly adjusted data and the corresponding graph provide insights into enzyme-catalyzed reactions under different conditions. The red curve fit signifies improved alignment with theoretical predictions, showcasing the powerful application of the Michaelis-Menten equation in enzymology.
![**Figure 8: Michaelis-Menten Plot Using a K<sub>m</sub> Value of 0.05 mM**
The table and graph illustrate the Michaelis-Menten kinetics for enzymatic activity using ethanol as the substrate. The worksheet appears to be a spreadsheet, with columns labeled A through F. Below is a detailed transcription of the content:
### Table Data:
- **Column A:** (Rows 2 to 11)
- Header: Blank
- Ethanol concentrations from 0 to 0.5
- **Column B: Ethanol (mM)**
- Values: 0.007, 0.016, 0.031, 0.063, 0.125, 0.25, 0.5
- **Column C: Vo (Initial velocity)**
- Values: 0.05, 0.1, 0.2, 0.41, 0.86, 1.5, 2.0
- **Column D: Km (Michaelis constant)**
- Value in row 13: 0.05
- Vmax (Maximum velocity) in row 14: 0.39
- **Column E: Calc. Vo (Calculated Vo)**
- Values: 0.006956, 0.01325, 0.025126, 0.047619, 0.086956, 0.135922, 0.19608
- **Column F: Delta V^2**
- Values: 0.000584, 0.00129, 0.003961, 0.007749
### Graph Description:
The graph is a scatter plot with a trend line, representing the relationship between substrate concentration and reaction velocity.
- **X-Axis:** Ethanol concentration (mM)
- **Y-Axis:** Reaction velocity (Vo)
**Data Series:**
- **Blue Dots:** Experimental initial velocities (Vo) corresponding to ethanol concentrations.
- **Red Line:** Calculated initial velocities (Calc. Vo) as per the Michaelis-Menten equation.
The plot shows how reaction velocity changes with substrate concentration, demonstrating typical saturation kinetics as described by the Michaelis-Menten model.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5ef5f725-b08b-4f71-a80c-f37e47d07785%2F23f1a570-f50b-49bd-accf-a98d01d4a902%2Fs584arl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Figure 8: Michaelis-Menten Plot Using a K<sub>m</sub> Value of 0.05 mM**
The table and graph illustrate the Michaelis-Menten kinetics for enzymatic activity using ethanol as the substrate. The worksheet appears to be a spreadsheet, with columns labeled A through F. Below is a detailed transcription of the content:
### Table Data:
- **Column A:** (Rows 2 to 11)
- Header: Blank
- Ethanol concentrations from 0 to 0.5
- **Column B: Ethanol (mM)**
- Values: 0.007, 0.016, 0.031, 0.063, 0.125, 0.25, 0.5
- **Column C: Vo (Initial velocity)**
- Values: 0.05, 0.1, 0.2, 0.41, 0.86, 1.5, 2.0
- **Column D: Km (Michaelis constant)**
- Value in row 13: 0.05
- Vmax (Maximum velocity) in row 14: 0.39
- **Column E: Calc. Vo (Calculated Vo)**
- Values: 0.006956, 0.01325, 0.025126, 0.047619, 0.086956, 0.135922, 0.19608
- **Column F: Delta V^2**
- Values: 0.000584, 0.00129, 0.003961, 0.007749
### Graph Description:
The graph is a scatter plot with a trend line, representing the relationship between substrate concentration and reaction velocity.
- **X-Axis:** Ethanol concentration (mM)
- **Y-Axis:** Reaction velocity (Vo)
**Data Series:**
- **Blue Dots:** Experimental initial velocities (Vo) corresponding to ethanol concentrations.
- **Red Line:** Calculated initial velocities (Calc. Vo) as per the Michaelis-Menten equation.
The plot shows how reaction velocity changes with substrate concentration, demonstrating typical saturation kinetics as described by the Michaelis-Menten model.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Biochemistry](https://www.bartleby.com/isbn_cover_images/9781319114671/9781319114671_smallCoverImage.jpg)
Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman
![Lehninger Principles of Biochemistry](https://www.bartleby.com/isbn_cover_images/9781464126116/9781464126116_smallCoverImage.gif)
Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman
![Fundamentals of Biochemistry: Life at the Molecul…](https://www.bartleby.com/isbn_cover_images/9781118918401/9781118918401_smallCoverImage.gif)
Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY
![Biochemistry](https://www.bartleby.com/isbn_cover_images/9781319114671/9781319114671_smallCoverImage.jpg)
Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman
![Lehninger Principles of Biochemistry](https://www.bartleby.com/isbn_cover_images/9781464126116/9781464126116_smallCoverImage.gif)
Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman
![Fundamentals of Biochemistry: Life at the Molecul…](https://www.bartleby.com/isbn_cover_images/9781118918401/9781118918401_smallCoverImage.gif)
Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY
![Biochemistry](https://www.bartleby.com/isbn_cover_images/9781305961135/9781305961135_smallCoverImage.gif)
Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning
![Biochemistry](https://www.bartleby.com/isbn_cover_images/9781305577206/9781305577206_smallCoverImage.gif)
Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning
![Fundamentals of General, Organic, and Biological …](https://www.bartleby.com/isbn_cover_images/9780134015187/9780134015187_smallCoverImage.gif)
Fundamentals of General, Organic, and Biological …
Biochemistry
ISBN:
9780134015187
Author:
John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:
PEARSON