Walking consumes approximately 100 kcal/mi. In the hydrolysis of ATP (ATP → ADP + Pi), the reaction that drives muscle contraction, ΔG°′ is −7.3 kcal/mol (−30.5 kJ/mol). Calculate how many grams of ATP must be produced to walk a mile. ATP synthesis is coupled to the oxidation of glucose (ΔG°′ = −686 kcal/mol). How many grams of glucose are actually metabolized to produce this amount of ATP? (Assume that only glucose oxidation is used to generate ATP and that 40% of the energy generated from this process is used to phosphorylate ADP. The gram molecular weight of glucose is 180 g and that of ATP is 507 g.)
Electron Transport Chain
The electron transport chain, also known as the electron transport system, is a group of proteins that transfer electrons through a membrane within mitochondria to create a gradient of protons that drives adenosine triphosphate (ATP)synthesis. The cell uses ATP as an energy source for metabolic processes and cellular functions. ETC involves series of reactions that convert redox energy from NADH (nicotinamide adenine dinucleotide (NAD) + hydrogen (H)) and FADH2(flavin adenine dinucleotide (FAD)) oxidation into proton-motive force(PMF), which is then used to synthesize ATP through conformational changes in the ATP synthase complex, a process known as oxidative phosphorylation.
Metabolism
Picture a campfire. It keeps the body warm on a cold night and provides light. To ensure that the fire keeps burning, fuel needs to be added(pieces of wood in this case). When a small piece is added, the fire burns bright for a bit and then dies down unless more wood is added. But, if too many pieces are placed at a time, the fire escalates and burns for a longer time, without actually burning away all the pieces that have been added. Many of them, especially the larger chunks or damp pieces, remain unburnt.
Cellular Respiration
Cellular respiration is the cellular process involved in the generation of adenosine triphosphate (ATP) molecules from the organic nutritional source obtained from the diet. It is a universal process observed in all types of life forms. The glucose (chemical formula C6H12O6) molecules are the preferred raw material for cell respiration as it possesses a simple structure and is highly efficient in nature.
Walking consumes approximately 100 kcal/mi. In the hydrolysis of ATP (ATP → ADP + Pi), the
reaction that drives muscle contraction, ΔG°′ is −7.3 kcal/mol (−30.5 kJ/mol). Calculate how
many grams of ATP must be produced to walk a mile. ATP synthesis is coupled to the oxidation
of glucose (ΔG°′ = −686 kcal/mol). How many grams of glucose are actually
produce this amount of ATP? (Assume that only glucose oxidation is used to generate ATP and
that 40% of the energy generated from this process is used to phosphorylate ADP. The gram
molecular weight of glucose is 180 g and that of ATP is 507 g.)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps