The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data-you can see several emission lines including the silicon line near 6.6 angstroms (0.66 nm). If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6599 nm, how fast is the gas moving? km/s (be sure to convert your answer to kilometers!) (Enter a positive value-if you get a negative answer ignore the minus sign.)

icon
Related questions
Question
Cas A SNR North Lobe
Chandra ACIS image
(M. Stage)
region of spectrum->
10*
km/s (be sure to convert your answer to kilometers!)
(Enter a positive value--if you get a negative answer ignore the minus sign.)
1000
100
Combine counts / Ang./ (0.964324 sq. arcsec)
10
1
0.1
Cas A Ms Spectrum from 4362.5 4458.5, region size 0.964324 sq. arcsec
Silicon line
werden der
5
10
20
Wavelength (Angstroms)
The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines
including the silicon line near 6.6 angstroms (0.66 nm).
If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6599 nm, how fast is the gas moving?
Transcribed Image Text:Cas A SNR North Lobe Chandra ACIS image (M. Stage) region of spectrum-> 10* km/s (be sure to convert your answer to kilometers!) (Enter a positive value--if you get a negative answer ignore the minus sign.) 1000 100 Combine counts / Ang./ (0.964324 sq. arcsec) 10 1 0.1 Cas A Ms Spectrum from 4362.5 4458.5, region size 0.964324 sq. arcsec Silicon line werden der 5 10 20 Wavelength (Angstroms) The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines including the silicon line near 6.6 angstroms (0.66 nm). If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6599 nm, how fast is the gas moving?
Expert Solution
Step 1

Given: 

Observed wavelength = 0.6599 nm

Actual wavelength = 0.6648 nm

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions