The engine designed by Lenoir was essentially an atmospheric engine based on the early steam engines. In this, a combustible mixture was contained in a cylinder: it was ignited and the pressure increased isochorically to the maximum level. After this the gas expanded isentropically through an expansion ratio, re, during which it produced work output. The air-standard cycle returned the gas to state 1 through an isochoric expansion to p₁ and an isobaric compression to V1. Assume p₁ = 1 bar, T₁ = 15 °C, p2 = 10 bar and the expansion ratio, re = 5. Calculate the specific work output and thermal efficiency of this cycle. How does this compare with the efficiency of an equivalent Carnot cycle? [650.30 kJ/kg; 34.97%; 90.0%]

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The engine designed by Lenoir was essentially an atmospheric engine based on the early steam
engines. In this, a combustible mixture was contained in a cylinder: it was ignited and the pressure
increased isochorically to the maximum level. After this the gas expanded isentropically through
an expansion ratio, re, during which it produced work output. The air-standard cycle returned the
gas to state 1 through an isochoric expansion to p₁ and an isobaric compression to V1.
Assume p₁ = 1 bar, T₁ = 15 °C, p2 = 10 bar and the expansion ratio, re = 5. Calculate the
specific work output and thermal efficiency of this cycle. How does this compare with the
efficiency of an equivalent Carnot cycle?
[650.30 kJ/kg; 34.97%; 90.0%]
Transcribed Image Text:The engine designed by Lenoir was essentially an atmospheric engine based on the early steam engines. In this, a combustible mixture was contained in a cylinder: it was ignited and the pressure increased isochorically to the maximum level. After this the gas expanded isentropically through an expansion ratio, re, during which it produced work output. The air-standard cycle returned the gas to state 1 through an isochoric expansion to p₁ and an isobaric compression to V1. Assume p₁ = 1 bar, T₁ = 15 °C, p2 = 10 bar and the expansion ratio, re = 5. Calculate the specific work output and thermal efficiency of this cycle. How does this compare with the efficiency of an equivalent Carnot cycle? [650.30 kJ/kg; 34.97%; 90.0%]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY