Suppose you perform the hypothesis test Ho: u = 50 versus H1: u < 50. The population variance, o², is unknown. The sample size isn = 18. Assume the significance level is 0.1. Part 1: 1) Should you use z or t to find the critical value? Oz Ot Part 2 of 4 Part 2: 2) Choose the correct critical region. Reject Ho if t > ta Reject Ho if t < -tg O Reject Ho if t > ta Reject Ho if t < – ta O Reject Ho if t > ta Reject Ho if t < - ta or t > ta Reject Ho if t > to Reject Ho if t < – ta or t > ta O Reject Ho if t< -tg or t > ta O Reject Ho if t < – ta Reject Ho if t < – ta O Reject Ho if t < - tę or t > t;

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
### Hypothesis Testing Example

Suppose you perform the hypothesis test \( H_0: \mu = 50 \) versus \( H_1: \mu < 50 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 18 \). Assume the significance level is 0.1.

#### Part 1:
**1) Should you use \( z \) or \( t \) to find the critical value?**

- \( \circ \) \( z \)
- \( \bullet \) \( t \) (Selected)

Since the population variance is unknown and the sample size is less than 30, the \( t \)-distribution is chosen.

#### Part 2:
**2) Choose the correct critical region.**

- \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \ge t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \ge t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha} \) or \( t \ge t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) or \( t > t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha/2} \) or \(
Transcribed Image Text:### Hypothesis Testing Example Suppose you perform the hypothesis test \( H_0: \mu = 50 \) versus \( H_1: \mu < 50 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 18 \). Assume the significance level is 0.1. #### Part 1: **1) Should you use \( z \) or \( t \) to find the critical value?** - \( \circ \) \( z \) - \( \bullet \) \( t \) (Selected) Since the population variance is unknown and the sample size is less than 30, the \( t \)-distribution is chosen. #### Part 2: **2) Choose the correct critical region.** - \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t \ge t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t \ge t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha} \) or \( t \ge t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) or \( t > t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t \le -t_{\alpha/2} \) or \(
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman