Suppose you perform the hypothesis test Ho: µ = 90 versus H1 :H > 90. The population variance, o², is unknown. The sample size is = 6. Assume the significance level is 0.01. Part 1: 1) Should you use z or t to find the critical value? Part 2 of 4 Part 2: 2) Choose the correct critical region. O Reject Ho if t > ta Reject Ho if t < - ta | Reject Ho if t > ta Reject Ho if t < Reject Ho if t > ta Reject Ho if t < - ta or t > ta Reject Ho if t > ta Reject Ho if t < – ta or t > ta Reject Ho if t < - tg ort > tg Reject Ho if t < – ta O Reject Ho if t < - ta O Reject Ho if t <- tę or t > te Part 3 of 4 Part 3: 3) Identify the critical value. If there are multiple critical values, separate them using commas. If using z, round to 2 decimals; if using t, round to 3 decimals.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

answer part 3

Suppose you perform the hypothesis test \( H_0: \mu = 90 \) versus \( H_1: \mu > 90 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 6 \). Assume the significance level is 0.01.

**Part 1:**

1) Should you use \( z \) or \( t \) to find the critical value?

- \( z \)
- \(\mathbf{t} \) (selected)

**Part 2:**

2) Choose the correct critical region.

- Reject \( H_0 \) if \( t > t_{\alpha} \)
- Reject \( H_0 \) if \( t \geq t_{\alpha} \)
- \(\mathbf{Reject \ H_0 \ if \ t > t_{\frac{\alpha}{2}} }\) (selected)
- Reject \( H_0 \) if \( t \geq t_{\frac{\alpha}{2}} \)
- Reject \( H_0 \) if \( t < -t_{\alpha} \)
- Reject \( H_0 \) if \( t \leq -t_{\alpha} \)
- Reject \( H_0 \) if \( t < -t_{\frac{\alpha}{2}} \)
- Reject \( H_0 \) if \( t \leq -t_{\frac{\alpha}{2}} \)
- Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \)
- Reject \( H_0 \) if \( t \leq -t_{\alpha} \) or \( t \geq t_{\alpha} \)
- Reject \( H_0 \) if \( t < -t_{\frac{\alpha}{2}} \) or \( t > t_{\frac{\alpha}{2}} \)
- Reject \( H_0 \) if \( t \leq -t_{\frac{\alpha}{2}} \) or \( t \geq t_{\frac{\alpha}{2}} \)

**Part 3:**

3) Identify the critical value. If there are multiple critical values, separate them using commas. If using \( z \), round to 2 decimals; if using \( t \), round to 3 decimals.

\[ \text{(Input Box)} \
Transcribed Image Text:Suppose you perform the hypothesis test \( H_0: \mu = 90 \) versus \( H_1: \mu > 90 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 6 \). Assume the significance level is 0.01. **Part 1:** 1) Should you use \( z \) or \( t \) to find the critical value? - \( z \) - \(\mathbf{t} \) (selected) **Part 2:** 2) Choose the correct critical region. - Reject \( H_0 \) if \( t > t_{\alpha} \) - Reject \( H_0 \) if \( t \geq t_{\alpha} \) - \(\mathbf{Reject \ H_0 \ if \ t > t_{\frac{\alpha}{2}} }\) (selected) - Reject \( H_0 \) if \( t \geq t_{\frac{\alpha}{2}} \) - Reject \( H_0 \) if \( t < -t_{\alpha} \) - Reject \( H_0 \) if \( t \leq -t_{\alpha} \) - Reject \( H_0 \) if \( t < -t_{\frac{\alpha}{2}} \) - Reject \( H_0 \) if \( t \leq -t_{\frac{\alpha}{2}} \) - Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \) - Reject \( H_0 \) if \( t \leq -t_{\alpha} \) or \( t \geq t_{\alpha} \) - Reject \( H_0 \) if \( t < -t_{\frac{\alpha}{2}} \) or \( t > t_{\frac{\alpha}{2}} \) - Reject \( H_0 \) if \( t \leq -t_{\frac{\alpha}{2}} \) or \( t \geq t_{\frac{\alpha}{2}} \) **Part 3:** 3) Identify the critical value. If there are multiple critical values, separate them using commas. If using \( z \), round to 2 decimals; if using \( t \), round to 3 decimals. \[ \text{(Input Box)} \
Expert Solution
Step 1

1)

 

Denote μ as the population mean.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman