Suppose you perform the hypothesis test Ho: u = 25 versus H1: µ 25. The population variance, o?, is known. The sample size is n = 53. Assume the significance level is 0.01. Part 1: 1) Should you use z or t to find the critical value? Ot O z Part 2 of 4 Part 2: 2) Choose the correct critical region. O Reject Ho if z > za O Reject Ho if z < – zg Reject Ho if z > za O Reject Ho if z< - zg Reject Ho if z > zg Reject Ho if z < - za or z > %a O Reject Ho if z > za Reject Ho if z < Za or z > Za | O Reject Ho if z < O Reject Ho if z < – zg or z > zg - Za Reject Ho if z < - Za Reject Ho if z< or z 2 z

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
## Hypothesis Testing Guide

### Context
Suppose you perform the hypothesis test \( H_0: \mu = 25 \) versus \( H_1: \mu \neq 25 \). The population variance, \( \sigma^2 \), is known. The sample size is \( n = 53 \). Assume the significance level is 0.01.

### Part 1: Choosing the Test

1) **Should you use \( z \) or \( t \) to find the critical value?**

- **Answer**: \( z \)

When the population variance is known, and the sample size is large (\( n > 30 \)), the \( z \)-test is appropriate.

### Part 2: Identifying the Critical Region

2) **Choose the correct critical region.**

**Options**:

- Reject \( H_0 \) if \( z > z_\alpha \)
- Reject \( H_0 \) if \( z \geq z_\alpha \)
- Reject \( H_0 \) if \( z > \frac{z_\alpha}{2} \)
- Reject \( H_0 \) if \( z \geq \frac{z_\alpha}{2} \)
- Reject \( H_0 \) if \( z < -z_\alpha \)
- Reject \( H_0 \) if \( z \leq -z_\alpha \)
- Reject \( H_0 \) if \( z < -\frac{z_\alpha}{2} \)
- Reject \( H_0 \) if \( z \leq \frac{z_\alpha}{2} \)
- Reject \( H_0 \) if \( z < -z_\alpha \) or \( z > z_\alpha \)
- Reject \( H_0 \) if \( z \leq -z_\alpha \) or \( z \geq z_\alpha \)
- Reject \( H_0 \) if \( z < -\frac{z_\alpha}{2} \) or \( z > \frac{z_\alpha}{2} \)
- Reject \( H_0 \) if \( z \leq -\frac{z_\alpha}{2} \) or \( z \geq \frac{z_\alpha}{2} \)

In a two-tailed test with significance level \( \alpha = 0.01
Transcribed Image Text:## Hypothesis Testing Guide ### Context Suppose you perform the hypothesis test \( H_0: \mu = 25 \) versus \( H_1: \mu \neq 25 \). The population variance, \( \sigma^2 \), is known. The sample size is \( n = 53 \). Assume the significance level is 0.01. ### Part 1: Choosing the Test 1) **Should you use \( z \) or \( t \) to find the critical value?** - **Answer**: \( z \) When the population variance is known, and the sample size is large (\( n > 30 \)), the \( z \)-test is appropriate. ### Part 2: Identifying the Critical Region 2) **Choose the correct critical region.** **Options**: - Reject \( H_0 \) if \( z > z_\alpha \) - Reject \( H_0 \) if \( z \geq z_\alpha \) - Reject \( H_0 \) if \( z > \frac{z_\alpha}{2} \) - Reject \( H_0 \) if \( z \geq \frac{z_\alpha}{2} \) - Reject \( H_0 \) if \( z < -z_\alpha \) - Reject \( H_0 \) if \( z \leq -z_\alpha \) - Reject \( H_0 \) if \( z < -\frac{z_\alpha}{2} \) - Reject \( H_0 \) if \( z \leq \frac{z_\alpha}{2} \) - Reject \( H_0 \) if \( z < -z_\alpha \) or \( z > z_\alpha \) - Reject \( H_0 \) if \( z \leq -z_\alpha \) or \( z \geq z_\alpha \) - Reject \( H_0 \) if \( z < -\frac{z_\alpha}{2} \) or \( z > \frac{z_\alpha}{2} \) - Reject \( H_0 \) if \( z \leq -\frac{z_\alpha}{2} \) or \( z \geq \frac{z_\alpha}{2} \) In a two-tailed test with significance level \( \alpha = 0.01
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman