Part 3: 3) Identify the critical value. If there are multiple critical values, separate them using commas. If using z, round to 2 decimals; if using t, round to 3 decimals.
Part 3: 3) Identify the critical value. If there are multiple critical values, separate them using commas. If using z, round to 2 decimals; if using t, round to 3 decimals.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
answer part 3
![**Hypothesis Testing Setup**
Suppose you perform the hypothesis test \( H_0: \mu = 50 \) versus \( H_1: \mu < 50 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 18 \). Assume the significance level is 0.1.
**Part 1:**
1) **Should you use \( z \) or \( t \) to find the critical value?**
- \( \circ \) \( z \)
- \( \bullet \) \( t \) ✓
**Part 2:**
2) **Choose the correct critical region.**
- \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha/2} \)
- \( \bullet \) Reject \( H_0 \) if \( t < -t_{\alpha} \) ✓
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \) or \( t \geq t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) or \( t > t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \) or \( t](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0393b910-875a-4ed6-a578-5b5396be78bf%2Fae8f8b49-2845-4100-8178-d462f69d685e%2Fd93pdo_processed.png&w=3840&q=75)
Transcribed Image Text:**Hypothesis Testing Setup**
Suppose you perform the hypothesis test \( H_0: \mu = 50 \) versus \( H_1: \mu < 50 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 18 \). Assume the significance level is 0.1.
**Part 1:**
1) **Should you use \( z \) or \( t \) to find the critical value?**
- \( \circ \) \( z \)
- \( \bullet \) \( t \) ✓
**Part 2:**
2) **Choose the correct critical region.**
- \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha/2} \)
- \( \bullet \) Reject \( H_0 \) if \( t < -t_{\alpha} \) ✓
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \) or \( t \geq t_{\alpha} \)
- \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) or \( t > t_{\alpha/2} \)
- \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \) or \( t
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman