Part 3: 3) Identify the critical value. If there are multiple critical values, separate them using commas. If using z, round to 2 decimals; if using t, round to 3 decimals.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Question

answer part 3

**Hypothesis Testing Setup**

Suppose you perform the hypothesis test \( H_0: \mu = 50 \) versus \( H_1: \mu < 50 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 18 \). Assume the significance level is 0.1.

**Part 1:**

1) **Should you use \( z \) or \( t \) to find the critical value?**

   - \( \circ \) \( z \)
   - \( \bullet \) \( t \) ✓

**Part 2:**

2) **Choose the correct critical region.**

   - \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha} \)
   - \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha} \)
   - \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha/2} \)
   - \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha/2} \)
   - \( \bullet \) Reject \( H_0 \) if \( t < -t_{\alpha} \) ✓
   - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \)
   - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \)
   - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \)
   - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \)
   - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \) or \( t \geq t_{\alpha} \)
   - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) or \( t > t_{\alpha/2} \)
   - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \) or \( t
Transcribed Image Text:**Hypothesis Testing Setup** Suppose you perform the hypothesis test \( H_0: \mu = 50 \) versus \( H_1: \mu < 50 \). The population variance, \( \sigma^2 \), is unknown. The sample size is \( n = 18 \). Assume the significance level is 0.1. **Part 1:** 1) **Should you use \( z \) or \( t \) to find the critical value?** - \( \circ \) \( z \) - \( \bullet \) \( t \) ✓ **Part 2:** 2) **Choose the correct critical region.** - \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t > t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t \geq t_{\alpha/2} \) - \( \bullet \) Reject \( H_0 \) if \( t < -t_{\alpha} \) ✓ - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha} \) or \( t > t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha} \) or \( t \geq t_{\alpha} \) - \( \circ \) Reject \( H_0 \) if \( t < -t_{\alpha/2} \) or \( t > t_{\alpha/2} \) - \( \circ \) Reject \( H_0 \) if \( t \leq -t_{\alpha/2} \) or \( t
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman