Q3) A single-phase semiconverter, shown in Fig.(3), is used to control the speed of small separately excited d.c. motor rated at 4.5 kW, 220V, 1500 rpm. The converter is connected to a single phase 230 V, 50 Hz supply. The armature resistance is Ra = 0.50 ohm and the armature circuit inductance is La = 10 mH. The motor voltage constant is Ke Q=0.1 V/rpm. With the converter operates as a rectifier, the d.c. motor runs at 1200 rpm and carries an armature current of 16 A Assume that the motor current is continuous and ripple-free (a) Draw and drive an equation for output voltage of semiconverter (b) The firing angle a. (c) The power delivered to the motor. (d) The supply power factor. R FWD Th₁ Th₂ D. D FWD ep Fig.(3) Da ecte
Q3) A single-phase semiconverter, shown in Fig.(3), is used to control the speed of small separately excited d.c. motor rated at 4.5 kW, 220V, 1500 rpm. The converter is connected to a single phase 230 V, 50 Hz supply. The armature resistance is Ra = 0.50 ohm and the armature circuit inductance is La = 10 mH. The motor voltage constant is Ke Q=0.1 V/rpm. With the converter operates as a rectifier, the d.c. motor runs at 1200 rpm and carries an armature current of 16 A Assume that the motor current is continuous and ripple-free (a) Draw and drive an equation for output voltage of semiconverter (b) The firing angle a. (c) The power delivered to the motor. (d) The supply power factor. R FWD Th₁ Th₂ D. D FWD ep Fig.(3) Da ecte
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,