Q3 (a) For the digital control system given in Figure 3, by adding phantom samplers to show that the z transfer function of the closed-loop system is given by C(z) R(z) G(z) 1+ G(z) H₁H₂(z) + R(s) G(s) C(s) H₂(s) H₁(s) Figure 3 (b) The analogue compensator 5s + 1 D(s) = 0.4s +1 is implemented digitally with sampling period 0.2 seconds to control the depth of a submarine system. Use the pole-zero mapping method to find a digital approximation to the analogue compensator.
Q3 (a) For the digital control system given in Figure 3, by adding phantom samplers to show that the z transfer function of the closed-loop system is given by C(z) R(z) G(z) 1+ G(z) H₁H₂(z) + R(s) G(s) C(s) H₂(s) H₁(s) Figure 3 (b) The analogue compensator 5s + 1 D(s) = 0.4s +1 is implemented digitally with sampling period 0.2 seconds to control the depth of a submarine system. Use the pole-zero mapping method to find a digital approximation to the analogue compensator.
Electricity for Refrigeration, Heating, and Air Conditioning (MindTap Course List)
10th Edition
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Russell E. Smith
Chapter11: Thermostats, Pressure Switches, And Other Electric Control Devices
Section: Chapter Questions
Problem 23RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Electricity for Refrigeration, Heating, and Air C…
Mechanical Engineering
ISBN:
9781337399128
Author:
Russell E. Smith
Publisher:
Cengage Learning
Electricity for Refrigeration, Heating, and Air C…
Mechanical Engineering
ISBN:
9781337399128
Author:
Russell E. Smith
Publisher:
Cengage Learning