Q1. a) b) A 200V DC series motor has armature resistance of 0.1 Q and field resistance of 0.15 Q. The motor runs at a speed of 600 rev/min when the shaft torque is 28 Nm. Friction and windage losses at this speed are 251.3 W. Calculate armature current, copper loss and efficiency. A DC shunt motor has an armature resistance of 0.22, a field resistance of 200 and is connected to a 200 V supply. i) Draw the equivalent electrical circuit of the motor ii) If the motor runs at 1500 rpm and takes a current of 11 A from the supply, calculate the output torque of the motor iii) If the supply voltage is kept constant but the load torque is changed so that the supply current decreased to 6 A, determine the motor speed and the output torque.
Q1. a) b) A 200V DC series motor has armature resistance of 0.1 Q and field resistance of 0.15 Q. The motor runs at a speed of 600 rev/min when the shaft torque is 28 Nm. Friction and windage losses at this speed are 251.3 W. Calculate armature current, copper loss and efficiency. A DC shunt motor has an armature resistance of 0.22, a field resistance of 200 and is connected to a 200 V supply. i) Draw the equivalent electrical circuit of the motor ii) If the motor runs at 1500 rpm and takes a current of 11 A from the supply, calculate the output torque of the motor iii) If the supply voltage is kept constant but the load torque is changed so that the supply current decreased to 6 A, determine the motor speed and the output torque.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
![Q1.
a)
b)
A 200V DC series motor has armature resistance of 0.1 Q and field
resistance of 0.15 Q. The motor runs at a speed of 600 rev/min when the
shaft torque is 28 Nm. Friction and windage losses at this speed are 251.3
W. Calculate armature current, copper loss and efficiency.
A DC shunt motor has an armature resistance of 0.22, a field resistance
of 200 and is connected to a 200 V supply.
i) Draw the equivalent electrical circuit of the motor
ii) If the motor runs at 1500 rpm and takes a current of 11 A from the
supply, calculate the output torque of the motor
iii) If the supply voltage is kept constant but the load torque is changed
so that the supply current decreased to 6 A, determine the motor
speed and the output torque.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9e9f3fbc-f178-4c10-833f-0c2a76ea4b0d%2F67d1f549-394d-422d-a3b4-c326e1d2fd88%2Frzbbf1c_processed.png&w=3840&q=75)
Transcribed Image Text:Q1.
a)
b)
A 200V DC series motor has armature resistance of 0.1 Q and field
resistance of 0.15 Q. The motor runs at a speed of 600 rev/min when the
shaft torque is 28 Nm. Friction and windage losses at this speed are 251.3
W. Calculate armature current, copper loss and efficiency.
A DC shunt motor has an armature resistance of 0.22, a field resistance
of 200 and is connected to a 200 V supply.
i) Draw the equivalent electrical circuit of the motor
ii) If the motor runs at 1500 rpm and takes a current of 11 A from the
supply, calculate the output torque of the motor
iii) If the supply voltage is kept constant but the load torque is changed
so that the supply current decreased to 6 A, determine the motor
speed and the output torque.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,