Part 1: Do the Analysis of the Ocean Thermal Gradient Power Plant shown below. Your Analysis will be easier to do in EES but it is up to you. Your EES program must be well documented and documentation in your code should reference system sketches. (The cycle and individual components) These sketches are done on attached engineering or typing paper, unless you are able to draw them in EES. You must validate your results with hand calculations on engineering paper that invoke the 1st and 2nd Law from the perspective of the entire cycle, not the individual components. Of course, a system sketch is required. 1. An ocean thermal gradient power plant using a simple non-ideal Rankine Cycle operates with a peak boiler temperature of 70 °F and a condenser temperature of 40 °F. The warm surface water of the ocean is supplying the thermal energy to the boiler. Assume a high source temperature of 80 °F. The cooler water deeper in the ocean is the sink for heat rejection at the condenser. Assume a low sink temperature of 35 °F (Such a power plant is a type of solar plant. After all, it's the sun that heats the ocean surface water.) Assume that the turbine has an isentropic efficiency of 0.8 and that the pump has an isentropic efficiency of 0.75. Assume that the working fluid for the power plant is water. The quality of the steam leaving the boiler is 1.0 for a simple cycle. Find the following and present them on a single typed Summary page that is the front page of Part 1: a) The Net work per unit of mass flow rate of the plant's working fluid b) The plant's thermal efficiency
Part 1: Do the Analysis of the Ocean Thermal Gradient Power Plant shown below. Your Analysis will be easier to do in EES but it is up to you. Your EES program must be well documented and documentation in your code should reference system sketches. (The cycle and individual components) These sketches are done on attached engineering or typing paper, unless you are able to draw them in EES. You must validate your results with hand calculations on engineering paper that invoke the 1st and 2nd Law from the perspective of the entire cycle, not the individual components. Of course, a system sketch is required. 1. An ocean thermal gradient power plant using a simple non-ideal Rankine Cycle operates with a peak boiler temperature of 70 °F and a condenser temperature of 40 °F. The warm surface water of the ocean is supplying the thermal energy to the boiler. Assume a high source temperature of 80 °F. The cooler water deeper in the ocean is the sink for heat rejection at the condenser. Assume a low sink temperature of 35 °F (Such a power plant is a type of solar plant. After all, it's the sun that heats the ocean surface water.) Assume that the turbine has an isentropic efficiency of 0.8 and that the pump has an isentropic efficiency of 0.75. Assume that the working fluid for the power plant is water. The quality of the steam leaving the boiler is 1.0 for a simple cycle. Find the following and present them on a single typed Summary page that is the front page of Part 1: a) The Net work per unit of mass flow rate of the plant's working fluid b) The plant's thermal efficiency
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY