1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8. (a) Show that this profile satisfies the appropriate boundary conditions; (b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall shear stress Tw in terms of 8(x) and μ and U if needed.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness
along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the
velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8.
(a) Show that this profile satisfies the appropriate boundary conditions;
(b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall
shear stress Tw in terms of 8(x) and μ and U if needed.
Transcribed Image Text:1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8. (a) Show that this profile satisfies the appropriate boundary conditions; (b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall shear stress Tw in terms of 8(x) and μ and U if needed.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY