1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8. (a) Show that this profile satisfies the appropriate boundary conditions; (b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall shear stress Tw in terms of 8(x) and μ and U if needed.
1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8. (a) Show that this profile satisfies the appropriate boundary conditions; (b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall shear stress Tw in terms of 8(x) and μ and U if needed.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
![1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness
along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the
velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8.
(a) Show that this profile satisfies the appropriate boundary conditions;
(b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall
shear stress Tw in terms of 8(x) and μ and U if needed.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F46029127-96a5-4dc2-997a-3c090d1aab2d%2F4e7d002e-9f81-41d0-9ea8-ad1b45cf08fb%2F2jqkvi9_processed.png&w=3840&q=75)
Transcribed Image Text:1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness
along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the
velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8.
(a) Show that this profile satisfies the appropriate boundary conditions;
(b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall
shear stress Tw in terms of 8(x) and μ and U if needed.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY