Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 5.29P
Air at 20°C flows at 1
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
G = 0.350MPa, P = 900N, a=20mm, b=50mm, c=80mm
[20 Points] Use Method of Sections to draw the shear-force and bending-moment diagrams for
the simply supported beam shown. Determine the maximum bending moment that occurs in the
span.
1.5 kN/m
4 m
2 m
C
14.10. A liquor containing 15 per cent
solids is concentrated to 55 per cent
solids in a double-effect evaporator.
operating at a pressure in the second
effect of 18 kN/m². No crystals are
formed. The flowrate of feed is 2.5 kg/
s at 375 K with a specific heat capacity
of 3.75 kJ/kg K. The boiling-point rise of
the concentrated liquor is 6 deg K and the
steam fed to the first effect is at 240 kN/
m². The overall heat transfer coefficients
in the first and second effects are 1.8 and
0.63 kW/m²K. respectively. If the heat
transfer area is to be the same in each
effect, what areas should be specified?
D
A
Chapter 5 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 5 - Evaluate the Reynolds number for flow over a tube...Ch. 5 - 5.2 Evaluate the Prandtl number from the following...Ch. 5 - Evaluate the Nusselt number for flow over a sphere...Ch. 5 - 5.4 Evaluate the Stanton number for flow over a...Ch. 5 - Evaluate the dimensionless groups hcD/k,UD/, and...Ch. 5 - 5.6 A fluid flows at 5 over a wide, flat plate 15...Ch. 5 - 5.7 The average Reynolds number for air passing in...Ch. 5 - Prob. 5.8PCh. 5 - When a sphere falls freely through a homogeneous...Ch. 5 - 5.10 Experiments have been performed on the...
Ch. 5 - 5.13 The torque due to the frictional resistance...Ch. 5 - The drag on an airplane wing in flight is known to...Ch. 5 - 5.19 Suppose that the graph below shows measured...Ch. 5 - Engine oil at 100C flows over and parallel to a...Ch. 5 - For flow over a slightly curved isothermal...Ch. 5 - Air at 20C flows at 1 m/s between two parallel...Ch. 5 - Air at 1000C flows at an inlet velocity of 2 m/s...Ch. 5 -
5.43 A refrigeration truck is traveling at 130...Ch. 5 - The air-conditioning system in a Chevrolet van for...Ch. 5 - Determine the rate of heat loss from the wall of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 14.9. A forward feed double-effect vertical evaporator, with equal heating areas in each effect, is fed with 5 kg/s of a liquor of specific heat capacity of 4.18 kJ/kg K. and with no boiling point rise, so that 50 per cent of the feed liquor is evaporated. The overall heat transfer coefficient in the second effect is 75 per cent of that in the first effect. Steam is fed at 395 K and the boiling point in the second effect is 373 K. The feed is heated by an external heater to the boiling point in the first effect. It is decided to bleed off 0.25 kg/s of vapour from the vapour line to the second effect for use in another process. If the feed is still heated to the boiling point of the first effect by external means, what will be the change in steam consumption of the evaporator unit? For the purpose of calculation, the latent heat of the vapours and of the steam may both be taken as 2230 kJ/kg Ад Oarrow_forwardcorrect the shaft misalignment in a cars transmission system, determine the offset distance required to correct the shaft misalignment of 4 degrees in a rotating system. shaft diameter is 4cm.arrow_forward14.14. A three-stage evaporator is fed with 1.25 kg/s of a liquor which is concentrated from 10 to 40 per cent solids by mass. The heat transfer coefficients may be taken as 3.1, 2.5 and 1.7 kW/m² K, respectively, in each effect. Calculate the steam flow at 170 kN/m² and the temperature distribution in the three effects, if: (a) the feed is at 294 K, and (b) the feed is at 355 K. Forward feed is used in each case and the values of U are the same for the two systems. The boiling point in the third effect is 325 K and the liquor has no boiling point rise. Oarrow_forward
- Form of the second question 3 Question 2: 500 In the figure shown, gear 2 rotates at 1000rpm. It transmits a power of 5kw to gear 4 via gear Loose 3 idler all gears spur, angle Gear pressure =200, and inclusion = 5m. Draw Analyze the forces on gear 3 and then find the reactions on Column 6, knowing the number of teeth N₂ = 12, N3 = 60, N₁ = 40arrow_forwardExample (7): Determine the heating surface area required for the production of 2.5kg/s of 50wt% NaOH solution from 15 wt% NaOH feed solution which entering at 100 oC to a single effect evaporator. The steam is available as saturated at 451.5K and the boiling point rise (boiling point evaluation) of 50wt% solution is 35K. the overall heat transfer coefficient is 2000 w/m²K. The pressure in the vapor space of the evaporator at atmospheric pressure. The solution has a specific heat of 4.18kJ/ kg.K. The enthalpy of vaporization under these condition is 2257kJ/kg Example (6): 5:48 م An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 Oarrow_forwardDesign a speed warning system that receives on two lines, an indication of the speed limit on the highway. There are three possible values 45, 55, or 65 MPH. It receives from the automobile, on two other lines, an indication of the speed of the vehicle. There are four possible values under 45, between 46 and 55, between 56 and 65, and over 65 MPH. It produces two outputs. The first, F, indicates whether the car is going above the speed limit. The second, G, indicates that the car is driving at a "dangerous speed" _ defined as either over 65 MPH or more than 10 MPH above the speed limit. The inputs are coded as follows: Speed limit A B Speed C D 45 0 0 65 1 1 a) Complete the Truth table for the speed warning system Inputs Outputs A B C D F G b) Write the Minterm expressions for the Output Functions. c) Minimize the output functions d) Implement the logic e) Using LabView, verify the Correctness of the Speed Warning System.arrow_forward
- Ex. The cantilever beam shown us, made ofrem steel with = 552 MPa is , ut subjected to fully reversed load. Neglect shear stress effect, estimate wheather the beam is safe or not safe at N= lo cycles 9 The beam is machined surface and the operating temp. is 100C. A F 200 a=0 N -200 N 1 L= 10cm D time 764 Yze.25 Gm L D= 1.3 cm d = 1 cm b= 1 cm -momend diagram AA -FL at the root of the cantilever, the bending moment is max. factor Ex. Repeat Ex. in page (24), with fluctuating load as shown below. By = 46242,041 = 552 MPa. Find the safety (NF) using Modified -Goodman, Gerber, and soderberg criterias F(N). ....400 timearrow_forwardExample The bar Shown Is. subsected to combined loadings as follows: P = = 20.KN F = 0 to 2 KN T= 0-5 KN.m The bar material has Se=400 mpa and out = 1379 MPa, Yiu= 1000 mpa Find the factor of safety, neglect the transverse Shear- Sol I load analysis ар F T Par = 20 KN (axial load- Pmim = -20 KN fully reversed dynamic) Emark 2km = Fmim = 0 N (bending loading -dynamic) Repeated D=20mm d=15 mm r=5mm L= =250mmarrow_forwardPL 120.8 Paie An extrusion operation produces the cross section shown in the figure below from a billet whose diameter = 100 mm The flow curve for the billet is define by σ = 160 €0.18. Determine extrusion force when (300,200 and 100) mm length remaining in the container. and blarrow_forward
- EXAM/3 Q/In the figure below the clamping force on the pipe is (331.7 lb), knowing that a single threaded screw Acme with major diameter (1 in) is used with coefficient of sliding friction (0.2135) and booth screw and nut are made from 1030 - hot rolled Carbon Steel. If the collar has a rolling friction of 0.02 and the mean collar diameter is 1.75 in. Determine: 1- The tightening and loosening torques. Is it self-locking? 2- Thread screw and nut induced stresses. w*7.3+² + Fx (7.3+1+6+43)) Fy (3 10 3.3 in Fx 421 3.3 (sin( 'in 3 in ?) 32° hinge "Sin (12")arrow_forwardQ1: At a constant velocity of 20 m/s, air passes across a flat plate with ambient pressure and temperature of 20 kPa and 20°C. At a distance of 7.5 cm from the leading edge, the plate is heated to a constant temperature of 75°C. How much heat is transferred overall from the leading edge to a location 35 cm from the leading edge? Tw Q2: The critical Reynolds number for flow over a flat plate in a particular application is 10°. This critical Reynolds number and an isothermal plate temperature of 400 K are encountered by air flowing across it at 1 atm, 300 K, and 10 m/s. At the end of the plate, the Reynolds number is 5 x 106. What will average heat transfer coefficient be for this system? What is the length of the plate? What is the plate's loss of heat? Re 21 Wat Q3: At 50 kPa and 300 K, air moves at an average velocity of 6 m/s across a 20-cm- Thoo P square plate. To provide a steady flow of heat, an electrical heater is mounted within the plate. If the plate temperature is limited to…arrow_forwardQuiz/Find the state of stresses and principal stresses at point (A)and point (B) for the circular cantilever rod of a diameter (5 cm) shown in figure bellow. Knowing that the rod is subjected to a force (F= 12 kN), axial force (P=2 kN) and to a torque (T= 488π N.m). P=2 kN T L= 300 mm Samsung Quad Camera galaxy A9arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license