Concept explainers
Experiments have been performed on the temperature distribution in a homogeneous long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/m K) with uniform internal heat generation. By dimensional analysis, determine the relation between the steady-state temperature at the center of the cylinder
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward1.3 A furnace wall is to be constructed of brick having standard dimensions of Two kinds of material are available. One has a maximum usable temperature of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks have the same cost and are laid in any manner, but we wish to design the most economical wall for a furnace with a temperature of 1040°C on the hot side and 200°C on the cold side. If the maximum amount of heat transfer permissible is 950 , determine the most economical arrangement using the available bricks.arrow_forwardThe initial temperature distribution of a 5 cm long stick is given by the following function. The circumference of the rod in question is completely insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat conduction along the rod as a function of time and position ? (x = 1.752 cm²/s for the bar in question) 100 A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ + 1 3π TC3 .....) 100 t + ··· ....... 13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t B) 3/3 t + …............) C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t – D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+ t + ··· .........) t +.... t + ··· .........) …..)arrow_forward
- In the design of a certain computer application, a heat flow simulation is required. In the simulation, the heat conductor, which is of length 10m, has a perfectly insulated surface. The temperature at both ends of the conductor is kept consistently at zero. The initial temperature at any point of the conductor is uniform at 25°C. The 1-dimensional heat equation is given as follows: for all 0arrow_forwardHi, kindly solve this problem and show the solution. Thank youarrow_forwardquestion is imagearrow_forwardfind only the following What is the total heat transfer to/from the building?arrow_forwardHi, kindly help me with this and show the complete solution. Thank youarrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = = W 3 m. k . Ay m-1, n m, n | Δx=" m, n+1 m, n-1 The side insulatedarrow_forwardHi, can you solve this problem for me please ? The lesson name is Heat Transfer. I did not solve. Thanks!arrow_forwardTransient Heat Conduction Cooking a Thanksgiving turkey is an art form and, if your skills in the kitchen are like mine, it is sometimes more of a mystical, elusive art form. Thankfully, science also has much to contribute in the kitchen as well as the laboratory. Let us consider the change in temperature of a common, 20-lb holiday fowl as it is cooked in a convection oven. To simplify the analysis, let's assume the bird can be modeled as a uniform sphere of radius 7.0 in. with a specific heat of 3.53 kJ/kg-K. Moreover, the turkey will be assumed to have a uniform temperature, T, throughout that will change with time as it is cooked according to the following relationship: 。 + (To - T∞)ept T(t) = T∞ + where To is the initial temperature of the turkey, T∞, is the oven temperature, V is the volume of the turkey, As is the surface area of the turkey, and h is the convection coefficient for the scenario which is 11.3 W/m²-K. If the oven is set to 325 °F and the initial temperature of the…arrow_forwardI want to answer all the questions by handwriting.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning