1) Determine the position a of the roller support B in terms of L so that the deflection at end C is the same as the maximum deflection of region AB of the overhang beam. EI is constant. Use the Moment Area method. A a Mo B 2) A propped cantilever beam of length 2L is loaded by a uniformly distributed load with intensity q. The beam is supported at B by a linearly elastic spring with stiffness k. Use the method of superposition to solve for all reactions. Let k = 6EI/L³. 90 -x A B L L

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter9: Deflections Of Beams
Section: Chapter Questions
Problem 9.5.15P: Use the method of superposition to find the angles of rotation 9Aand SBat the supports, and the...
icon
Related questions
Question

give full handwritten solutions for this

1) Determine the position a of the roller support B in terms of L so that the deflection at
end C is the same as the maximum deflection of region AB of the overhang beam. EI
is constant. Use the Moment Area method.
A
a
Mo
B
2) A propped cantilever beam of length 2L is loaded by a uniformly distributed load with
intensity q. The beam is supported at B by a linearly elastic spring with stiffness k. Use
the method of superposition to solve for all reactions. Let k = 6EI/L³.
90
-x
A
B
L
L
Transcribed Image Text:1) Determine the position a of the roller support B in terms of L so that the deflection at end C is the same as the maximum deflection of region AB of the overhang beam. EI is constant. Use the Moment Area method. A a Mo B 2) A propped cantilever beam of length 2L is loaded by a uniformly distributed load with intensity q. The beam is supported at B by a linearly elastic spring with stiffness k. Use the method of superposition to solve for all reactions. Let k = 6EI/L³. 90 -x A B L L
Expert Solution
steps

Step by step

Solved in 2 steps with 14 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning