Lab14_Fluid_Flow_in_a_Pipe-revised
docx
keyboard_arrow_up
School
Arizona State University *
*We aren’t endorsed by this school
Course
111
Subject
Mechanical Engineering
Date
Jan 9, 2024
Type
docx
Pages
4
Uploaded by MagistrateResolveHyena37
Lab 14 Worksheet
Name __________________________
Fluid Dynamics
Section _______
Access the
Fluid Pressure and Flow PhET simulation
.
Click on the image at the top of the page to
access/play the simulation. This lab can be
completed using either the CheerpJ or Java versions,
though the CheerpJ version is easier to access.
When the simulation launches, click on the “Flow”
tab near the upper-left corner of the screen. You
should see small red dots flowing through a pipe.
Part 1 – Guided Exploration
Use the simulation to answer the following questions:
1.
Drag a velocity meter (labeled “Speed”) down to the uniform pipe. Measure the velocity in m/s
of the water at several different positions within the pipe. How do the readings change as you
move the sensor horizontally through the pipe? How do the readings change when you move
the sensor vertically through the pipe? Be specific in your explanation.
2.
Drag a pressure meter down to the uniform pipe. Measure the pressure in kPa of the water at
several different positions within the pipe. How do the readings change as you move the sensor
horizontally through the pipe? How do the readings change when you move the sensor vertically
through the pipe? Be specific in your explanation.
Picture 1 - Fluid Pressure and Flow Simulation
The readings do not change whether I move the sensor vertically or horizontally.
There is a higher pressure when the sensor is moved vertically(due to height difference in
the pipe), but horizontally the pressure stayed the same.
3.
Do the pressure sensor readings report the gauge pressure or the absolute pressure? Explain.
4.
Select the ruler tool and drag the ruler to the middle of the uniform pipe. Use the handlebars on
the pipe to change the diameter of the middle of the pipe. Leave the rest of the pipe diameter
unchanged.
For each change in pipe diameter, measure the fluid velocity and pressure at points A and B as
shown in the diagram below. Complete the table.
Diameter A
(m)
Velocity A
(m/s)
Pressure A
(kPa)
Diameter B
(m)
Velocity B
(m/s)
Pressure B
(kPa)
2.0
1.5
111.22 kPa
3.0
0.8
111.57 kPa
2.0
1.5
111.22 kPa
2.5
0.8
117.14 kPa
2.0
1.5
111.22 kPa
2.0
0.8
120.92 kPa
2.0
1.5
111.22 kPa
1.5
0.8
126.496 kPa
2.0
1.5
111.22 kPa
1.0
0.8
131.27 kPa
Point A
Point B
The pressure sensor readings report the gauge pressure (absolute pressure doesn’t talk
about atm pressure and relies on a specific pressure range).
5.
What is the effect on the velocity and pressure at point A if the pipe diameter at point B
decreases?
6.
What is the effect on the velocity and pressure at point B if the pipe diameter at point B
decreases?
Part 2 – Design and Conduct an Experiment
7.
Design an experiment that will allow you to determine how the height difference between
points A and B in the pipe will affect the velocities and the pressures. List your procedures below.
Indicate the independent and dependent variables and include a few variables that must remain
constant.
8.
Perform your experiment. Create a properly labeled data table with at least five data points.
Velocity stays constant, pressure stays the same with minute differences.
The velocity stayed constant, and the pressure changed the further down the pipe I went.
I will determine how height difference determines velocity and pressure in points A and B. I will
change the height of Point A rather than point B and will keep flow rate and Height of Point B
constant. The independent variable will be the height difference, and the dependent variable will
be velocity and pressure.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Diameter A
(m)
Velocity A
(m/s)
Pressure A
(kPa)
Diameter B
(m)
Velocity B
(m/s)
Pressure B
(kPa)
3.0
0.8
102.99
2.0
1.6
111.36
2.5
2.9
106.89
2.0
1.6
111.36
2.0
3.6
111.67
2.0
1.6
111.36
1.5
3.8
113.33
2.0
1.6
111.36
1.0
6.3
102.27
2.0
1.6
111.36
9.
What conclusions can you derive from your data? Be specific in your explanation.
10.
Reflect on the entire lab. Summarize your findings below.
The pressure and velocity for B stay the same, but the Velocity and pressure for A change, with
an increase up until the 1.0m diameter, where there is an 11 kPa drop for whatever reason.
Therefore, decreasing the amount of fluid that can get through the tube increases pressure and
velocity, but allowing more liquid to get through does the opposite.
I kind of related this lab to our ventilation unit in my animal physiology class. Tightening the flow
made the pressure greater, and widening the tube decreased the velocity of the flow. Using the
simulation helped better my understanding of fluid dynamics, I just wish we could model it in an
unsimulated environment.
Related Documents
Related Questions
Newton’s 2nd Law Lab (Modeling friendly lab)
Go to the PhET simulation Forces & Motion. https://phet.colorado.edu/sims/html/forcesandmotionbasics/latest/forcesandmotionbasics_en.html
Select “Acceleration”
Click to show Forces, Sum of Forces, Values, Mass, and Acceleration.
There are two experiments for this activity – make sure you include both.
Experiment #1: Acceleration vs. Force
In this lab you will determine the relationship between acceleration and net force.
Choose a mass at the beginning, and keep it constant for this entire experiment.
Set the friction to zero. This will make your Applied Force equal to the net force.
Record data for five different values of Applied Force.
Graph Acceleration vs. Net Force.
Graph this in Google sheets(you want a line graph - it should only have one line).
Make sure that Applied Force information is used as the x value
Make sure that Acceleration information is used as the y value
Add a trendline – see what fits best –…
arrow_forward
You are assigned as the head of the engineering team to work on selecting the right-sized blower that will go on your new line of hybrid vehicles.The fan circulates the warm air on the inside of the windshield to stop condensation of water vapor and allow for maximum visibility during wintertime (see images). You have been provided with some info. and are asked to pick from the bottom table, the right model number(s) that will satisfy the requirement. Your car is equipped with a fan blower setting that allow you to choose between speeds 0, 1,2 and 3. Variation of the convection heat transfer coefficient is dependent upon multiple factors, including the size and the blower configuration.You can only use the following parameters:
arrow_forward
The red questions please q4 and q5 and q7
arrow_forward
The first photo is the question, where the 2nd shows some problem solving strategies
arrow_forward
Please show work in a handwritten format.
Don't use chatgpt.
Mechanics of materials/design.
arrow_forward
AutoSave
STATICS - Protected View• Saved to this PC -
O Search (Alt+Q)
Off
ERIKA JOY DAILEG
EJ
File
Home
Insert
Draw
Design
Layout
References
Mailings
Review
View
Help
Acrobat
O Comments
E Share
PROTECTED VIEW Be careful-files from the Internet can contain viruses. Unless you need to edit, it's safer to stay in Protected View.
Enable Editing
Situation 9 - A 6-m long ladder weighing 600 N is shown in the Figure. It is required to determine
the horizontal for P that must be exerted at point C to prevent the ladder from sliding. The
coefficient of friction between the ladder and the surface at A and B is 0.20.
25. Determine the reaction at A.
26. Determine the reaction at B.
27. Determine the required force P.
4.5 m
1.5 m
H=0.2
30°
Page 5 of 5
671 words
D. Focus
100%
C
ЕPIC
GAMES
ENG
7:24 pm
w
US
16/02/2022
IZ
arrow_forward
Part 1: Do the Analysis of the Ocean Thermal Gradient Power Plant shown
below. Your Analysis will be easier to do in EES but it is up to you. Your
EES program must be well documented and documentation in your code
should reference system sketches. (The cycle and individual components)
These sketches are done on attached engineering or typing paper, unless
you are able to draw them in EES. You must validate your results with hand
calculations on engineering paper that invoke the 1 and 2 Law from the
perspective of the entire cycle, not the individual components. Of course,
a system sketch is required.
nd
1. An ocean thermal gradient power plant using a simple non-ideal Rankine
Cycle operates with a peak boiler temperature of 70 °F and a condenser
temperature of 40 °F. The warm surface water of the ocean is supplying
the thermal energy to the boiler. Assume a high source temperature of 80
°F. The cooler water deeper in the ocean is the sink for heat rejection at
the condenser. Assume a…
arrow_forward
solve this please on ANSYS and give me screenshots how you did it, please
arrow_forward
Please type out and or diagram Your solution in a way that is easy to read I have bad eyesight
arrow_forward
You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture
fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates
implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial
weight bearing activities.
Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to
verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into
solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending
test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the
yield stress for the Ti-6Al-4V…
arrow_forward
Hello tutors, help me. Just answer "Let Us Try"
arrow_forward
Motiyo
Add explanation
arrow_forward
Pls do on your own dont copy paste other ans I'll get to know about that and I'll upvote
arrow_forward
\ח
"Chicago - Lakeshore Dr from John Hancock Center" by Ryan from Toronto, CA CC BY 2.0
This image is taken from the John Hancock Center and is an aerial view near Oak Street Beach. The
general speed limit on Jean Baptiste Point DuSable Lake Shore Drive, shown in this image, is 40
mph. As you travel south on the drive, you must enter the curve south of Oak Street Beach (at Point
..AL
-far
BIKI
O Search
Hintain
11
3
SIM
arrow_forward
I want to answer all the questions by handwriting.
arrow_forward
1) A low-friction cart is placed between two identical springs attached to rigid walls.
If you push the cart against one of the springs and release it, it will continue to
move back and forth between the springs.
www
Draw a force-time graph showing the sum of the horizontal forces exerted on the
cart as it moves back and force between the springs.
Scientific Abilities
Is able to construct a
force diagram
Missing
No representation is
constructed.
Inadequate
FD is constructed but
contains major errors such
as incorrect mislabeled or
not labeled force vectors,
length of vectors, wrong
direction, extra incorrect
vectors are added, or
vectors are missing.
Needs Improvement
FD contains no errors in
vectors but lacks a key
feature such as labels of
forces with two subscripts or
vectors are not drawn from
single point, or axes are
missing.
Adequate
The diagram contains no
errors and each force is
labeled so that it is clearly
understood what each force
represents.
Explain whether or not this…
arrow_forward
Please make the exact graph that you see in the picture, along with the graph are numbers that are data. Please make the exact graph do not make anything thing different, the blue and orange circles should be there and the lines should be the same including the titles. Please make sure everything is exactly the same. Use MATLAB, and send the code and please make sure no error signs comes up. Take your time please I need help.
arrow_forward
The Weather Monitor. Your South American expedition splits into two groups: one that stays at home base, and yours that goes off to
set up a sensor that will monitor precipitation, temperature, and sunlight through the upcoming winter. The sensor must link up to a
central communications system at base camp that simultaneously uploads the data from numerous sensors to a satellite. In order to
set up and calibrate the sensor, you will have to communicate with base camp to give them specific location information.
Unfortunately, the group's communication and navigation equipment has dwindled to walkie-talkies and a compass due to a river-raft
mishap, which means your group must not exceed the range of the walkie-talkies (3.0 miles). However, you do have a laser rangefinder
to help you measure distances as you navigate with the compass. After a few hours of hiking, you find the perfect plateau on which to
mount the sensor. You have carefully mapped your path from base camp around lakes and…
arrow_forward
The free body diagram must be drawn , its mandatory.
Don't use chatgpt
arrow_forward
HW_5_01P.pdf
PDF
File | C:/Users/Esther/Downloads/HW_5_01P.pdf
2 Would you like to set Microsoft Edge as your default browser?
Set as default
To be most productive with Microsoft Edge, finish setting up your
Complete setup
Maybe later
browser.
(D Page view A Read aloud V Draw
7 Highlight
2
of 3
Erase
5. Two cables are tied to the 2.0 kg ball shown below. The ball revolves in a horizontal
circle at constant speed. (Hint: You will need to use some geometry and properties of
triangles and their angles!)
60°
1.0 m
60°
© 2013 Pearson Education, Inc.
(a) For what speed is the tension the same in both cables?
(b) What is the tension?
2.
2:04 PM
O Type here to search
C A
2/9/2021
(8)
arrow_forward
Help me solve this ENGINEERING GRAPHICS question
Use 0.25 cartesian paper or 0.25 Isometric paper please.
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Newton’s 2nd Law Lab (Modeling friendly lab) Go to the PhET simulation Forces & Motion. https://phet.colorado.edu/sims/html/forcesandmotionbasics/latest/forcesandmotionbasics_en.html Select “Acceleration” Click to show Forces, Sum of Forces, Values, Mass, and Acceleration. There are two experiments for this activity – make sure you include both. Experiment #1: Acceleration vs. Force In this lab you will determine the relationship between acceleration and net force. Choose a mass at the beginning, and keep it constant for this entire experiment. Set the friction to zero. This will make your Applied Force equal to the net force. Record data for five different values of Applied Force. Graph Acceleration vs. Net Force. Graph this in Google sheets(you want a line graph - it should only have one line). Make sure that Applied Force information is used as the x value Make sure that Acceleration information is used as the y value Add a trendline – see what fits best –…arrow_forwardYou are assigned as the head of the engineering team to work on selecting the right-sized blower that will go on your new line of hybrid vehicles.The fan circulates the warm air on the inside of the windshield to stop condensation of water vapor and allow for maximum visibility during wintertime (see images). You have been provided with some info. and are asked to pick from the bottom table, the right model number(s) that will satisfy the requirement. Your car is equipped with a fan blower setting that allow you to choose between speeds 0, 1,2 and 3. Variation of the convection heat transfer coefficient is dependent upon multiple factors, including the size and the blower configuration.You can only use the following parameters:arrow_forwardThe red questions please q4 and q5 and q7arrow_forward
- The first photo is the question, where the 2nd shows some problem solving strategiesarrow_forwardPlease show work in a handwritten format. Don't use chatgpt. Mechanics of materials/design.arrow_forwardAutoSave STATICS - Protected View• Saved to this PC - O Search (Alt+Q) Off ERIKA JOY DAILEG EJ File Home Insert Draw Design Layout References Mailings Review View Help Acrobat O Comments E Share PROTECTED VIEW Be careful-files from the Internet can contain viruses. Unless you need to edit, it's safer to stay in Protected View. Enable Editing Situation 9 - A 6-m long ladder weighing 600 N is shown in the Figure. It is required to determine the horizontal for P that must be exerted at point C to prevent the ladder from sliding. The coefficient of friction between the ladder and the surface at A and B is 0.20. 25. Determine the reaction at A. 26. Determine the reaction at B. 27. Determine the required force P. 4.5 m 1.5 m H=0.2 30° Page 5 of 5 671 words D. Focus 100% C ЕPIC GAMES ENG 7:24 pm w US 16/02/2022 IZarrow_forward
- Part 1: Do the Analysis of the Ocean Thermal Gradient Power Plant shown below. Your Analysis will be easier to do in EES but it is up to you. Your EES program must be well documented and documentation in your code should reference system sketches. (The cycle and individual components) These sketches are done on attached engineering or typing paper, unless you are able to draw them in EES. You must validate your results with hand calculations on engineering paper that invoke the 1 and 2 Law from the perspective of the entire cycle, not the individual components. Of course, a system sketch is required. nd 1. An ocean thermal gradient power plant using a simple non-ideal Rankine Cycle operates with a peak boiler temperature of 70 °F and a condenser temperature of 40 °F. The warm surface water of the ocean is supplying the thermal energy to the boiler. Assume a high source temperature of 80 °F. The cooler water deeper in the ocean is the sink for heat rejection at the condenser. Assume a…arrow_forwardsolve this please on ANSYS and give me screenshots how you did it, pleasearrow_forwardPlease type out and or diagram Your solution in a way that is easy to read I have bad eyesightarrow_forward
- You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial weight bearing activities. Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the yield stress for the Ti-6Al-4V…arrow_forwardHello tutors, help me. Just answer "Let Us Try"arrow_forwardMotiyo Add explanationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY