Homework 2-merged

pdf

School

Georgia Institute Of Technology *

*We aren’t endorsed by this school

Course

3531

Subject

Mechanical Engineering

Date

Feb 20, 2024

Type

pdf

Pages

14

Uploaded by MajorHeronMaster783

Report
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
ae 3531 homework 2 problem 4 num1 = [0.5 1]; den1 = [1]; sys1 = tf(num1,den1) sys1 = 0.5 s + 1 Continuous-time transfer function. Model Properties num2 = [10]; den2 = [1 2 0]; sys2 = tf(num2,den2) sys2 = 10 --------- s^2 + 2 s Continuous-time transfer function. Model Properties sysg = series(sys1,sys2) sysg = 5 s + 10 --------- s^2 + 2 s Continuous-time transfer function. Model Properties sys = feedback(sysg, [1]) sys = 5 s + 10 -------------- s^2 + 7 s + 10 Continuous-time transfer function. Model Properties problem 6 s = tf( 's' ) s = 1
s Continuous-time transfer function. Model Properties sys1 = 12.8*0.1/(s^2 + 2.8*s + 1.6 +0.64*0.1); sys2 = 12.8*1/(s^2 + 2.8*s + 1.6 +0.64*1); sys3 = 12.8*10/(s^2 + 2.8*s + 1.6 +0.64*5); sys4 = 12.8*10/(s^2 + 2.8*s + 1.6 +0.64*10); sys5 = 12.8*25/(s^2 + 2.8*s + 1.6 +0.64*25); p1 = pole(sys1); p2 = pole(sys2); p3 = pole(sys3); p4 = pole(sys4); p5 = pole(sys5); h = pzplot(sys1,sys2,sys3,sys4,sys5) h = resppack.mpzplot grid on step(sys1) 2
step(sys2) 3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
step(sys3) step(sys4) 4
step(sys5) 5
problem 7 s = tf( 's' ) s = s Continuous-time transfer function. Model Properties sys1 = 25/(s^2 + 12*s + 25); sys2 = 25/(s^2 + 10*s + 25); sys3 = 25/(s^2 + 8*s + 25); sys4 = 25/(s^2 + 6*s + 25); sys5 = 25/(s^2 + 4*s + 25); sys6 = 25/(s^2 + 2*s + 25); sys7 = 25/(s^2 + 25); sys8 = 100/(s^2 + 10*s + 25); sys9 = 100/(s^2 + 8*s + 100); hold on step(sys1) step(sys2) step(sys3) step(sys4) step(sys5) step(sys6) step(sys7) step(sys8) step(sys9) legend( 'sys1' , 'sys2' , 'sys3' , 'sys4' , 'sys5' , 'sys6' , 'sys7' , 'sys8' , 'sys9' ) xlim([0 10]) hold off 6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
tfvec = [sys1 sys2 sys3 sys4 sys5 sys6 sys7 sys8 sys9] tfvec = From input 1 to output: 25 --------------- s^2 + 12 s + 25 From input 2 to output: 25 --------------- s^2 + 10 s + 25 From input 3 to output: 25 -------------- s^2 + 8 s + 25 From input 4 to output: 25 -------------- s^2 + 6 s + 25 From input 5 to output: 25 -------------- s^2 + 4 s + 25 From input 6 to output: 25 -------------- s^2 + 2 s + 25 7
From input 7 to output: 25 -------- s^2 + 25 From input 8 to output: 100 --------------- s^2 + 10 s + 25 From input 9 to output: 100 --------------- s^2 + 8 s + 100 Continuous-time transfer function. Model Properties for i = 1:1:9 p = pole(tfvec(i)) temp = stepinfo(tfvec(i)) end p = 2×1 -9.3166 -2.6834 temp = struct with fields: RiseTime: 0.8743 TransientTime: 1.5845 SettlingTime: 1.5845 SettlingMin: 0.9011 SettlingMax: 0.9985 Overshoot: 0 Undershoot: 0 Peak: 0.9985 PeakTime: 2.5605 p = 2×1 -5 -5 temp = struct with fields: RiseTime: 0.6717 TransientTime: 1.1668 SettlingTime: 1.1668 SettlingMin: 0.9008 SettlingMax: 0.9999 Overshoot: 0 Undershoot: 0 Peak: 0.9999 PeakTime: 2.3900 p = 2×1 complex -4.0000 + 3.0000i -4.0000 - 3.0000i temp = struct with fields: RiseTime: 0.4936 TransientTime: 0.7512 SettlingTime: 0.7512 SettlingMin: 0.9018 SettlingMax: 1.0152 Overshoot: 1.5165 Undershoot: 0 Peak: 1.0152 PeakTime: 1.0477 8
p = 2×1 complex -3.0000 + 4.0000i -3.0000 - 4.0000i temp = struct with fields: RiseTime: 0.3711 TransientTime: 1.1887 SettlingTime: 1.1887 SettlingMin: 0.9083 SettlingMax: 1.0948 Overshoot: 9.4773 Undershoot: 0 Peak: 1.0948 PeakTime: 0.7829 p = 2×1 complex -2.0000 + 4.5826i -2.0000 - 4.5826i temp = struct with fields: RiseTime: 0.2930 TransientTime: 1.6819 SettlingTime: 1.6819 SettlingMin: 0.9065 SettlingMax: 1.2537 Overshoot: 25.3741 Undershoot: 0 Peak: 1.2537 PeakTime: 0.6908 p = 2×1 complex -1.0000 + 4.8990i -1.0000 - 4.8990i temp = struct with fields: RiseTime: 0.2411 TransientTime: 3.9192 SettlingTime: 3.9192 SettlingMin: 0.7228 SettlingMax: 1.5265 Overshoot: 52.6542 Undershoot: 0 Peak: 1.5265 PeakTime: 0.6447 p = 2×1 complex 0.0000 + 5.0000i 0.0000 - 5.0000i temp = struct with fields: RiseTime: NaN TransientTime: NaN SettlingTime: NaN SettlingMin: NaN SettlingMax: NaN Overshoot: NaN Undershoot: NaN Peak: Inf PeakTime: Inf p = 2×1 -5 -5 temp = struct with fields: RiseTime: 0.6717 TransientTime: 1.1668 SettlingTime: 1.1668 SettlingMin: 3.6033 SettlingMax: 3.9997 Overshoot: 0 Undershoot: 0 9
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Peak: 3.9997 PeakTime: 2.3900 p = 2×1 complex -4.0000 + 9.1652i -4.0000 - 9.1652i temp = struct with fields: RiseTime: 0.1465 TransientTime: 0.8409 SettlingTime: 0.8409 SettlingMin: 0.9065 SettlingMax: 1.2537 Overshoot: 25.3741 Undershoot: 0 Peak: 1.2537 PeakTime: 0.3454 problem 9 s = tf( 's' ) s = s Continuous-time transfer function. Model Properties sys = 17/(s^2+2*s+17) sys = 17 -------------- s^2 + 2 s + 17 Continuous-time transfer function. Model Properties stepinfo(sys) ans = struct with fields: RiseTime: 0.3054 TransientTime: 3.4340 SettlingTime: 3.4340 SettlingMin: 0.7922 SettlingMax: 1.4559 Overshoot: 45.5913 Undershoot: 0 Peak: 1.4559 PeakTime: 0.7829 sysa = 17/((s^2+2*s+17)*(s+0.01)); sysb = 17/((s^2+2*s+17)*(s+0.1)); sysc = 17/((s^2+2*s+17)*(s+1)); sysd = 17/((s^2+2*s+17)*(s+10)); syse = 17/((s^2+2*s+17)*(s+100)); subplot(2,1,1) hold on 10
step(sys) step(sysa) step(sysb) step(sysc) step(sysd) step(syse) xlim([0 20]) hold off sysf = (17*(s+0.01))/(s^2+2*s+17); sysg = (17*(s+0.1))/(s^2+2*s+17); sysh = (17*(s+1))/(s^2+2*s+17); sysi = (17*(s+10))/(s^2+2*s+17); sysj = (17*(s+100))/(s^2+2*s+17); subplot(2,1,2) hold on step(sys) step(sysf) step(sysg) step(sysh) step(sysi) step(sysj) hold off 11