
Concept explainers
To calculate: The zeros of the function

Answer to Problem 6.8.12EP
The zeros of the function
Explanation of Solution
Given information:
The function
Formula used:
A polynomial of n degree has n zeros, which can be either real or imaginary.
Descartes’ rule of signs states that consider a polynomial
Calculation:
Consider the function
Observe that degree of polynomial is 4, so the functions has 4 zeros which can be either real or imaginary.
Descartes’ rule of signs states that consider a polynomial
So, count the number of times the sign changes between the coefficients of
There is 1 positive real zero.
Now,
Descartes’ rule of signs states that consider a polynomial
So, count the number of times the sign changes between the coefficients of
There is 1 negative real zero.
Next, construct a table with possible combinations of real and imaginary zeros.
Recall that the Rational zero theorem states that provided a polynomial
For the provided function leading coefficient is 4 and constant term is 63. Therefore, p is a factor of 63 and q is a factor of 4.
The possible combinations of
Next, construct a table with help of synthetic substitution to compute the value of
As observed one zero is resulted at
Now, the depressed polynomial is obtained is
Group the terms together and factor the polynomial.
Apply the zero product property.
Either
That is,
Thus, the zeros of the function
Chapter EP Solutions
Algebra 2
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Calculus: Early Transcendentals (2nd Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Pre-Algebra Student Edition
A First Course in Probability (10th Edition)
- I need help with number 5.arrow_forward3) Use the following system of linear inequalities graphed below to answer the questions. a) Use the graph to write the symbolic form of the system of linear inequalities. b) Is (-4,2) a solution to the system? Explain. 5 -7 -5 -3 -2 0 2 3 4 $ 6 -2 -6 -7arrow_forward) Graph the feasible region subject to the following constraints. x + y ≤ 6 y ≤ 2x x ≥ 0, y ≥ 0 P + xarrow_forward
- Solve the following system of equations: 50x+20y=1800 10x+3y=300arrow_forward> > > we are hiring Salesforce Admin Location: Remote Key Responsibilities: Administer Salesforce Sales & Revenue Cloud (CPQ & Billing) Configure workflows, validation rules & dashboards Automate processes using Flows & Process Builder Collaborate with Sales, Finance & Marketing teams Manage user roles & security Apply: Hr@forcecraver.comarrow_forwardAnswer this questionarrow_forward
- 1. vector projection. Assume, ER1001 and you know the following: ||||=4, 7=-0.5.7. For each of the following, explicitly compute the value. འབ (a) (b) (c) (d) answer. Explicitly compute ||y7||. Explain your answer. Explicitly compute the cosine similarity of and y. Explain your Explicitly compute (x, y). Explain your answer. Find the projection of onto y and the projection of onto .arrow_forward2. Answer the following questions using vectors u and v. --0-0-0 = find the the cosine similarity and the angle between u and v. འརྒྱ (a) (b) find the scalar projection of u onto v. (c) find the projection of u onto v. (d) (e) (f) find the scalar projection of onto u. find the projection of u onto u. find the projection of u onto and the projection of onto . (Hint: find the inner product and verify the orthogonality)arrow_forwardPlease type out answerarrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





