Cauchy-Euler equation with repeated roots One of several ways to find the second linearly independent solution of a Cauchy-Euler equation
a. What is the polynomial associated with this equation?
b. Show that if we let t = ex (or .x = ln t), then this equation becomes the constant coefficient equation
c. What is the characteristic polynomial for the equation in part (b)? Conclude that if the polynomial in part (a) has a repeated root, then the characteristic polynomial also has a repeated root.
d. Write the general solution of the equation in part (b) in the case of a repeated root.
e. Express the solution in part (d) in terms of the original variable t to show that the second linearly independent solution of the Cauchy-Euler equation is y = t(1–a)/2 ln t.
Trending nowThis is a popular solution!
Chapter D2 Solutions
Calculus: Early Transcendentals, 2nd Edition
- Example: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardExample: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardPlease can you give detailed steps on how the solutions change from complex form to real form. Thanks.arrow_forward
- Examples: Solve the following differential equation using Laplace transform (e) ty"-ty+y=0 with y(0) = 0, and y'(0) = 1arrow_forwardExamples: Solve the following differential equation using Laplace transform (a) y" +2y+y=t with y(0) = 0, and y'(0) = 1arrow_forwardπ 25. If lies in the interval <0 and Sinh x = tan 0. Show that: 2 Cosh x= Sec 0, tanh x =Sin 0, Coth x = Csc 0, Csch x = Cot 0, and Sech x Cos 0.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning