Calculus: Early Transcendentals, 2nd Edition
2nd Edition
ISBN: 9780321965165
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter D2.4, Problem 30E
(a)
To determine
To find: The current in the RCL circuit assuming that
(b)
To determine
To identify: The transient and steady state solutions to the differential equation obtained in part (a) and graph them with the solution in part (a).
(c)
To determine
To graph: The transient, steady state and general solutions obtained in part (a) and (b)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer the question given correctly
This problem is an example of critically damped harmonic motion.
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring
feet. The ball is started in motion from the equilibrium position with a downward velocity of 5
feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times
its velocity (in feet per second). Suppose that after t seconds the ball is y feet below its rest
position. Find y in terms of t.
Take as the gravitational acceleration 32 feet per second per second. (Note that the positive y
direction is down in this problem.)
y =
le
1
A tank contains 480 gallons of water and 15 oz of salt. Water containing a salt concentration of (1 + sint) oz/gal flows into the tank
2
at a rate of 5 gal/min, and the mixture in the tank flows out at the same rate.
The long-time behavior of the solution is an oscillation about a certain constant level. What is this level? What is the amplitude of the
oscillation?
Round the values to two decimal places.
Oscillation about a level = i
Amplitude of the oscillation
=
OZ.
OZ.
Chapter D2 Solutions
Calculus: Early Transcendentals, 2nd Edition
Ch. D2.1 - Describe how to find the order of a differential...Ch. D2.1 - Prob. 2ECh. D2.1 - Prob. 3ECh. D2.1 - Give a general form of a second-order linear...Ch. D2.1 - Prob. 5ECh. D2.1 - Prob. 6ECh. D2.1 - Prob. 7ECh. D2.1 - Prob. 8ECh. D2.1 - Prob. 9ECh. D2.1 - Prob. 10E
Ch. D2.1 - Prob. 11ECh. D2.1 - Prob. 12ECh. D2.1 - Prob. 13ECh. D2.1 - Verifying solutions Verify by substitution that...Ch. D2.1 - Prob. 15ECh. D2.1 - Prob. 16ECh. D2.1 - Prob. 17ECh. D2.1 - Prob. 18ECh. D2.1 - Prob. 19ECh. D2.1 - Prob. 20ECh. D2.1 - Prob. 21ECh. D2.1 - Prob. 22ECh. D2.1 - Prob. 23ECh. D2.1 - Prob. 24ECh. D2.1 - Prob. 25ECh. D2.1 - Prob. 26ECh. D2.1 - Prob. 27ECh. D2.1 - Prob. 28ECh. D2.1 - Prob. 29ECh. D2.1 - Prob. 30ECh. D2.1 - Prob. 31ECh. D2.1 - Prob. 32ECh. D2.1 - Prob. 33ECh. D2.1 - Prob. 34ECh. D2.1 - Prob. 35ECh. D2.1 - Prob. 36ECh. D2.1 - Prob. 37ECh. D2.1 - Prob. 38ECh. D2.1 - Prob. 39ECh. D2.1 - Prob. 40ECh. D2.1 - Prob. 41ECh. D2.1 - Prob. 42ECh. D2.1 - Prob. 43ECh. D2.1 - Initial value problems Solve the following initial...Ch. D2.1 - Prob. 45ECh. D2.1 - Prob. 46ECh. D2.1 - Explain why or why not Determine whether the...Ch. D2.1 - Prob. 48ECh. D2.1 - Solution verification Verify by substitution that...Ch. D2.1 - Prob. 50ECh. D2.1 - Prob. 51ECh. D2.1 - Prob. 52ECh. D2.1 - Prob. 53ECh. D2.1 - Prob. 54ECh. D2.1 - Prob. 55ECh. D2.1 - Prob. 56ECh. D2.1 - Prob. 57ECh. D2.1 - Prob. 58ECh. D2.1 - Prob. 59ECh. D2.1 - Prob. 60ECh. D2.1 - Prob. 61ECh. D2.1 - Prob. 62ECh. D2.1 - Prob. 63ECh. D2.1 - Prob. 64ECh. D2.1 - Prob. 65ECh. D2.1 - Prob. 66ECh. D2.1 - Prob. 67ECh. D2.1 - Prob. 68ECh. D2.1 - Prob. 69ECh. D2.1 - Reduction of order Suppose you are solving a...Ch. D2.2 - Prob. 1ECh. D2.2 - Prob. 2ECh. D2.2 - Prob. 3ECh. D2.2 - Prob. 4ECh. D2.2 - Prob. 5ECh. D2.2 - Prob. 6ECh. D2.2 - Prob. 7ECh. D2.2 - Give the trial solution used to solve a...Ch. D2.2 - Prob. 9ECh. D2.2 - Prob. 10ECh. D2.2 - General solutions with distinct real roots Find...Ch. D2.2 - Prob. 12ECh. D2.2 - Prob. 13ECh. D2.2 - Prob. 14ECh. D2.2 - Initial value problems with distinct real roots...Ch. D2.2 - Prob. 16ECh. D2.2 - Prob. 17ECh. D2.2 - Prob. 18ECh. D2.2 - Prob. 19ECh. D2.2 - Prob. 20ECh. D2.2 - Prob. 21ECh. D2.2 - Prob. 22ECh. D2.2 - Prob. 23ECh. D2.2 - Prob. 24ECh. D2.2 - Prob. 25ECh. D2.2 - Prob. 26ECh. D2.2 - Prob. 27ECh. D2.2 - Prob. 28ECh. D2.2 - Prob. 29ECh. D2.2 - Prob. 30ECh. D2.2 - Prob. 31ECh. D2.2 - Prob. 32ECh. D2.2 - Prob. 33ECh. D2.2 - Prob. 34ECh. D2.2 - Initial value problems with Cauchy-Euler equations...Ch. D2.2 - Prob. 36ECh. D2.2 - Prob. 37ECh. D2.2 - Initial value problems with Cauchy-Euler equations...Ch. D2.2 - Prob. 39ECh. D2.2 - Prob. 42ECh. D2.2 - Prob. 43ECh. D2.2 - Prob. 44ECh. D2.2 - Prob. 45ECh. D2.2 - Prob. 46ECh. D2.2 - Prob. 47ECh. D2.2 - Prob. 48ECh. D2.2 - Prob. 49ECh. D2.2 - Prob. 50ECh. D2.2 - Prob. 51ECh. D2.2 - Cauchy-Euler equation with repeated roots It can...Ch. D2.2 - Prob. 53ECh. D2.2 - Prob. 54ECh. D2.2 - Prob. 55ECh. D2.2 - Prob. 56ECh. D2.2 - Prob. 57ECh. D2.2 - Prob. 58ECh. D2.2 - Prob. 59ECh. D2.2 - Prob. 60ECh. D2.2 - Prob. 61ECh. D2.2 - Cauchy-Euler equation with repeated roots One of...Ch. D2.2 - Prob. 63ECh. D2.2 - Prob. 64ECh. D2.2 - Prob. 65ECh. D2.2 - Prob. 66ECh. D2.3 - Explain how to find the general solution of the...Ch. D2.3 - Prob. 2ECh. D2.3 - Prob. 3ECh. D2.3 - Prob. 4ECh. D2.3 - Prob. 5ECh. D2.3 - Prob. 6ECh. D2.3 - Prob. 7ECh. D2.3 - Prob. 8ECh. D2.3 - Prob. 9ECh. D2.3 - Prob. 10ECh. D2.3 - Prob. 11ECh. D2.3 - Prob. 12ECh. D2.3 - Prob. 13ECh. D2.3 - Undetermined coefficients with exponentials Find a...Ch. D2.3 - Prob. 15ECh. D2.3 - Prob. 16ECh. D2.3 - Prob. 17ECh. D2.3 - Prob. 18ECh. D2.3 - Prob. 19ECh. D2.3 - Prob. 20ECh. D2.3 - Prob. 21ECh. D2.3 - Prob. 22ECh. D2.3 - Prob. 23ECh. D2.3 - Prob. 24ECh. D2.3 - Prob. 25ECh. D2.3 - Prob. 26ECh. D2.3 - Prob. 27ECh. D2.3 - Prob. 28ECh. D2.3 - Prob. 29ECh. D2.3 - Prob. 30ECh. D2.3 - Prob. 31ECh. D2.3 - Prob. 32ECh. D2.3 - Prob. 33ECh. D2.3 - Prob. 34ECh. D2.3 - Prob. 35ECh. D2.3 - Prob. 36ECh. D2.3 - Prob. 37ECh. D2.3 - Initial value problems Find the general solution...Ch. D2.3 - Prob. 39ECh. D2.3 - Prob. 40ECh. D2.3 - Prob. 41ECh. D2.3 - Prob. 42ECh. D2.3 - Prob. 43ECh. D2.3 - Prob. 44ECh. D2.3 - Prob. 45ECh. D2.3 - Prob. 46ECh. D2.3 - Prob. 47ECh. D2.3 - Prob. 48ECh. D2.3 - Prob. 49ECh. D2.3 - Prob. 50ECh. D2.3 - Prob. 51ECh. D2.3 - Variation of parameters Finding a particular...Ch. D2.4 - Explain the meaning of the words damped, undamped,...Ch. D2.4 - In the models discussed in this section, under...Ch. D2.4 - Prob. 3ECh. D2.4 - Prob. 4ECh. D2.4 - Prob. 5ECh. D2.4 - Prob. 6ECh. D2.4 - Prob. 7ECh. D2.4 - Prob. 8ECh. D2.4 - Prob. 9ECh. D2.4 - Free undamped oscillations Solve the initial value...Ch. D2.4 - Prob. 11ECh. D2.4 - Prob. 12ECh. D2.4 - Prob. 13ECh. D2.4 - Prob. 14ECh. D2.4 - Prob. 15ECh. D2.4 - Prob. 16ECh. D2.4 - Free damped oscillations Solve the initial value...Ch. D2.4 - Free damped oscillations Solve the initial value...Ch. D2.4 - Designing a shock absorber A shock absorber must...Ch. D2.4 - Designing a suspension system A spring in a...Ch. D2.4 - Forced damped oscillations 21.A 1-kg block hangs...Ch. D2.4 - Forced damped oscillations 22.A 20-kg block hangs...Ch. D2.4 - Prob. 23ECh. D2.4 - Prob. 24ECh. D2.4 - Prob. 25ECh. D2.4 - Prob. 26ECh. D2.4 - Prob. 27ECh. D2.4 - LCR circuits 28.The circuit in Exercise 27 (10-ohm...Ch. D2.4 - Prob. 29ECh. D2.4 - Prob. 30ECh. D2.4 - Prob. 31ECh. D2.4 - LCR circuits 32.Find the charge on the capacitor...Ch. D2.4 - Explain why or why not Determine whether the...Ch. D2.4 - Prob. 34ECh. D2.4 - Prob. 35ECh. D2.4 - Prob. 36ECh. D2.4 - Prob. 37ECh. D2.4 - Prob. 38ECh. D2.4 - Prob. 39ECh. D2.4 - Prob. 41ECh. D2.4 - Prob. 42ECh. D2.4 - Prob. 43ECh. D2.4 - Prob. 44ECh. D2.4 - Applications 4346.Horizontal oscillators The...Ch. D2.4 - Prob. 46ECh. D2.4 - Prob. 47ECh. D2.4 - Prob. 48ECh. D2.4 - Prob. 49ECh. D2.4 - Prob. 51ECh. D2.4 - Prob. 52ECh. D2.5 - Prob. 1ECh. D2.5 - Prob. 2ECh. D2.5 - Prob. 3ECh. D2.5 - Prob. 4ECh. D2.5 - Prob. 5ECh. D2.5 - Prob. 6ECh. D2.5 - Prob. 7ECh. D2.5 - Prob. 8ECh. D2.5 - Gain and phase lag functions Consider the...Ch. D2.5 - Prob. 10ECh. D2.5 - Prob. 11ECh. D2.5 - Solutions to oscillator equations Consider the...Ch. D2.5 - Prob. 13ECh. D2.5 - Solutions to oscillator equations Consider the...Ch. D2.5 - Prob. 15ECh. D2.5 - Prob. 16ECh. D2.5 - Prob. 17ECh. D2.5 - Prob. 18ECh. D2.5 - Analyzing circuit equations Consider the circuit...Ch. D2.5 - Prob. 20ECh. D2.5 - Prob. 21ECh. D2.5 - Prob. 22ECh. D2.5 - Prob. 23ECh. D2.5 - A high-pass filter Consider the LCR circuit shown...Ch. D2.5 - High-pass filters Consider the high-pass filter...Ch. D2.5 - Prob. 26ECh. D2.5 - High-pass filters Consider the high-pass filter...Ch. D2.5 - Prob. 28ECh. D2 - Prob. 1RECh. D2 - Prob. 2RECh. D2 - Prob. 3RECh. D2 - Prob. 4RECh. D2 - Solving homogeneous equations Find the general...Ch. D2 - Prob. 6RECh. D2 - Prob. 7RECh. D2 - Prob. 8RECh. D2 - Prob. 9RECh. D2 - Prob. 10RECh. D2 - Prob. 11RECh. D2 - Prob. 12RECh. D2 - Prob. 13RECh. D2 - Prob. 14RECh. D2 - Prob. 15RECh. D2 - Prob. 16RECh. D2 - Prob. 17RECh. D2 - Prob. 18RECh. D2 - Prob. 19RECh. D2 - Prob. 20RECh. D2 - Prob. 21RECh. D2 - Forced undamped oscillations A 4-kg block hangs on...Ch. D2 - Free damped oscillations A 0.2-kg block hangs on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Repeat Example 5 when microphone A receives the sound 4 seconds before microphone B.arrow_forwardSuppose that at any given time t (in seconds) the current i (in amperes) in an alternating current circuit is i = 2 cos t + 2 sin t. What is the peak current for this circuit (largest magnitude)?arrow_forwardThis problem concerns the electric circuit shown in the figure below. Capacitor Resistor Inductor A charged capacitor connected to an inductor causes a current to flow through the inductor until the capacitor is fully discharged. The current in the inductor, in turn, charges up the capacitor until the capacitor is fully charged again. If Q(t) is the charge on the capacitor at time t, and I is the current, then OP dt I If the circuit resistance is zero, then the charge Q and the current I in the circuit satisfy the differential equation IP dt L- + 0, where C is the capacitance and L is the inductance, so Q = 0. C dt? Then, just as as a spring can have a damping force which affects its motion, so can a circuit; this is introduced by the resistor, so that if the resistance of the resistor is R, dQ +R dt2 Q = 0. dt If L = 1 henry, R = 1 ohm, and C = 4 farads, find a formula for the charge when (a) Q(0) = 0 and Q' (0) = 5: Q(t) = 5te^(-t/2.5) help (formulas) |(b) Q(0) = 5 and Q' (0) = 0:…arrow_forward
- D7. Determine the oscillation of x²-x²+x + x = 0.arrow_forwardA population of animals oscillates between a low of 1100 on January 1 ( t = 0 ) and a high of 2000 on July 1 (t = 6 ). The population doesn't reach this high before July 1. (a) Find a formula for the population, P, in terms of the time, t, in months. Assume there is no phase shift. Use "pi" or symbol r to enter the n. P(t) = ? Edit (b) Interpret the amplitude, period, and midline of the function P = f(t). Amplitude = This is the amount that the population varies above and below the average population. Period = months. This means the cycle repeats annually.arrow_forwardPlease answer #4arrow_forward
- Given the graphs of y = sin.x and y= e* –3 in the Figure Q1(e). Find the root of sinx=e* -3. y 15 10 3 х Figure Q1(e)arrow_forwardA guitar string is pulled at point Pa distance of 3 cm above its rest position. It is then released and vibrates in damped harmonic motion with a frequency of 165 cycles per second. After 1 s, it is observed that the amplitude of the vibration at point P is 0.3 cm. (a) Find the damping constant c. (Round your answer to two decimal places.) C = (b) Using the values given above, find an equation that describes the position of point P above its rest position as a function of time. Take t = 0 to be the instant that the string is released. (Round your coefficients to two decimal places.) Need Help? Read Itarrow_forwardQUESTION 3 An application of Kirchhoff's Current Law to the circuit with nodal voltages in Figure 2 gives rise to the following simultaneous equations. (a) (b) (c) V. 10 Ohms 5 A ↑ 20 Ohms www V 2 40 Ohms 50 Ohms Figure 2 V 2 A 0.15-0.1V₂ -0.05V = 5 -0.1 +0.145V₂ -0.025V = 0 -0.05V, -0.02V₂ +0.075V = 2 Compute the determinant of the matrix Y. Compute the inverse of the matrix Y. By Matrix Inversion method using YV = I, determine the nodal voltages of V₁, V₂ andarrow_forward
- Find the charge on the capacitor and the current in an LC-series circuit when L = 0.1 h, C = 0.1 f, E(t) = 100 sin(yt) V, g(0) = 0 C, and i(0) = 0 A. q(t) = i(t) = Need Help? Read It PrtScn Home End F4 F5 F6 F7 F8 F9 2$ & 4. 6 7 9 T Y U 08arrow_forwardd y-2 coc (x서플) Find the amplihucte, penod, phase shift, and vertical shipt +4 CoS 2arrow_forwardThe equation C = | 0.40 cos 1.20d0 and S= -0.40 sin1.20d0 are involved in the %3D %3D e study of damped oscillations. Determine the values. Ans C=0.66 and S = 0.41arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finite Math: Markov Chain Example - The Gambler's Ruin; Author: Brandon Foltz;https://www.youtube.com/watch?v=afIhgiHVnj0;License: Standard YouTube License, CC-BY
Introduction: MARKOV PROCESS And MARKOV CHAINS // Short Lecture // Linear Algebra; Author: AfterMath;https://www.youtube.com/watch?v=qK-PUTuUSpw;License: Standard Youtube License
Stochastic process and Markov Chain Model | Transition Probability Matrix (TPM); Author: Dr. Harish Garg;https://www.youtube.com/watch?v=sb4jo4P4ZLI;License: Standard YouTube License, CC-BY