Calculus: Early Transcendentals, 2nd Edition
2nd Edition
ISBN: 9780321965165
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter D2.4, Problem 28E
LCR circuits
28. The circuit in Exercise 27 (10-ohm resistor, a 0.1-henry inductor, and a 1/240-farad capacitor) is connected in series to a voltage source with output E(t) = 100 sin 150t.
a. Find the current in the circuit assuming that I(0) = Q(0) = 0.
b. Identify the transient and steady-state currents.
c. Graph the steady-state, transient, and total current, for t ≥ 0.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Show that the vector field
F(x, y, z)
=
(2x sin ye³)ix² cos yj + (3xe³ +5)k
satisfies the necessary conditions for a conservative vector field, and find a potential function for
F.
i need help please
6.
(i)
Sketch the trace of the following curve on R²,
(t) = (sin(t), 3 sin(t)),
tЄ [0, π].
[3 Marks]
Total marks 10
(ii)
Find the length of this curve.
[7 Marks]
Chapter D2 Solutions
Calculus: Early Transcendentals, 2nd Edition
Ch. D2.1 - Describe how to find the order of a differential...Ch. D2.1 - Prob. 2ECh. D2.1 - Prob. 3ECh. D2.1 - Give a general form of a second-order linear...Ch. D2.1 - Prob. 5ECh. D2.1 - Prob. 6ECh. D2.1 - Prob. 7ECh. D2.1 - Prob. 8ECh. D2.1 - Prob. 9ECh. D2.1 - Prob. 10E
Ch. D2.1 - Prob. 11ECh. D2.1 - Prob. 12ECh. D2.1 - Prob. 13ECh. D2.1 - Verifying solutions Verify by substitution that...Ch. D2.1 - Prob. 15ECh. D2.1 - Prob. 16ECh. D2.1 - Prob. 17ECh. D2.1 - Prob. 18ECh. D2.1 - Prob. 19ECh. D2.1 - Prob. 20ECh. D2.1 - Prob. 21ECh. D2.1 - Prob. 22ECh. D2.1 - Prob. 23ECh. D2.1 - Prob. 24ECh. D2.1 - Prob. 25ECh. D2.1 - Prob. 26ECh. D2.1 - Prob. 27ECh. D2.1 - Prob. 28ECh. D2.1 - Prob. 29ECh. D2.1 - Prob. 30ECh. D2.1 - Prob. 31ECh. D2.1 - Prob. 32ECh. D2.1 - Prob. 33ECh. D2.1 - Prob. 34ECh. D2.1 - Prob. 35ECh. D2.1 - Prob. 36ECh. D2.1 - Prob. 37ECh. D2.1 - Prob. 38ECh. D2.1 - Prob. 39ECh. D2.1 - Prob. 40ECh. D2.1 - Prob. 41ECh. D2.1 - Prob. 42ECh. D2.1 - Prob. 43ECh. D2.1 - Initial value problems Solve the following initial...Ch. D2.1 - Prob. 45ECh. D2.1 - Prob. 46ECh. D2.1 - Explain why or why not Determine whether the...Ch. D2.1 - Prob. 48ECh. D2.1 - Solution verification Verify by substitution that...Ch. D2.1 - Prob. 50ECh. D2.1 - Prob. 51ECh. D2.1 - Prob. 52ECh. D2.1 - Prob. 53ECh. D2.1 - Prob. 54ECh. D2.1 - Prob. 55ECh. D2.1 - Prob. 56ECh. D2.1 - Prob. 57ECh. D2.1 - Prob. 58ECh. D2.1 - Prob. 59ECh. D2.1 - Prob. 60ECh. D2.1 - Prob. 61ECh. D2.1 - Prob. 62ECh. D2.1 - Prob. 63ECh. D2.1 - Prob. 64ECh. D2.1 - Prob. 65ECh. D2.1 - Prob. 66ECh. D2.1 - Prob. 67ECh. D2.1 - Prob. 68ECh. D2.1 - Prob. 69ECh. D2.1 - Reduction of order Suppose you are solving a...Ch. D2.2 - Prob. 1ECh. D2.2 - Prob. 2ECh. D2.2 - Prob. 3ECh. D2.2 - Prob. 4ECh. D2.2 - Prob. 5ECh. D2.2 - Prob. 6ECh. D2.2 - Prob. 7ECh. D2.2 - Give the trial solution used to solve a...Ch. D2.2 - Prob. 9ECh. D2.2 - Prob. 10ECh. D2.2 - General solutions with distinct real roots Find...Ch. D2.2 - Prob. 12ECh. D2.2 - Prob. 13ECh. D2.2 - Prob. 14ECh. D2.2 - Initial value problems with distinct real roots...Ch. D2.2 - Prob. 16ECh. D2.2 - Prob. 17ECh. D2.2 - Prob. 18ECh. D2.2 - Prob. 19ECh. D2.2 - Prob. 20ECh. D2.2 - Prob. 21ECh. D2.2 - Prob. 22ECh. D2.2 - Prob. 23ECh. D2.2 - Prob. 24ECh. D2.2 - Prob. 25ECh. D2.2 - Prob. 26ECh. D2.2 - Prob. 27ECh. D2.2 - Prob. 28ECh. D2.2 - Prob. 29ECh. D2.2 - Prob. 30ECh. D2.2 - Prob. 31ECh. D2.2 - Prob. 32ECh. D2.2 - Prob. 33ECh. D2.2 - Prob. 34ECh. D2.2 - Initial value problems with Cauchy-Euler equations...Ch. D2.2 - Prob. 36ECh. D2.2 - Prob. 37ECh. D2.2 - Initial value problems with Cauchy-Euler equations...Ch. D2.2 - Prob. 39ECh. D2.2 - Prob. 42ECh. D2.2 - Prob. 43ECh. D2.2 - Prob. 44ECh. D2.2 - Prob. 45ECh. D2.2 - Prob. 46ECh. D2.2 - Prob. 47ECh. D2.2 - Prob. 48ECh. D2.2 - Prob. 49ECh. D2.2 - Prob. 50ECh. D2.2 - Prob. 51ECh. D2.2 - Cauchy-Euler equation with repeated roots It can...Ch. D2.2 - Prob. 53ECh. D2.2 - Prob. 54ECh. D2.2 - Prob. 55ECh. D2.2 - Prob. 56ECh. D2.2 - Prob. 57ECh. D2.2 - Prob. 58ECh. D2.2 - Prob. 59ECh. D2.2 - Prob. 60ECh. D2.2 - Prob. 61ECh. D2.2 - Cauchy-Euler equation with repeated roots One of...Ch. D2.2 - Prob. 63ECh. D2.2 - Prob. 64ECh. D2.2 - Prob. 65ECh. D2.2 - Prob. 66ECh. D2.3 - Explain how to find the general solution of the...Ch. D2.3 - Prob. 2ECh. D2.3 - Prob. 3ECh. D2.3 - Prob. 4ECh. D2.3 - Prob. 5ECh. D2.3 - Prob. 6ECh. D2.3 - Prob. 7ECh. D2.3 - Prob. 8ECh. D2.3 - Prob. 9ECh. D2.3 - Prob. 10ECh. D2.3 - Prob. 11ECh. D2.3 - Prob. 12ECh. D2.3 - Prob. 13ECh. D2.3 - Undetermined coefficients with exponentials Find a...Ch. D2.3 - Prob. 15ECh. D2.3 - Prob. 16ECh. D2.3 - Prob. 17ECh. D2.3 - Prob. 18ECh. D2.3 - Prob. 19ECh. D2.3 - Prob. 20ECh. D2.3 - Prob. 21ECh. D2.3 - Prob. 22ECh. D2.3 - Prob. 23ECh. D2.3 - Prob. 24ECh. D2.3 - Prob. 25ECh. D2.3 - Prob. 26ECh. D2.3 - Prob. 27ECh. D2.3 - Prob. 28ECh. D2.3 - Prob. 29ECh. D2.3 - Prob. 30ECh. D2.3 - Prob. 31ECh. D2.3 - Prob. 32ECh. D2.3 - Prob. 33ECh. D2.3 - Prob. 34ECh. D2.3 - Prob. 35ECh. D2.3 - Prob. 36ECh. D2.3 - Prob. 37ECh. D2.3 - Initial value problems Find the general solution...Ch. D2.3 - Prob. 39ECh. D2.3 - Prob. 40ECh. D2.3 - Prob. 41ECh. D2.3 - Prob. 42ECh. D2.3 - Prob. 43ECh. D2.3 - Prob. 44ECh. D2.3 - Prob. 45ECh. D2.3 - Prob. 46ECh. D2.3 - Prob. 47ECh. D2.3 - Prob. 48ECh. D2.3 - Prob. 49ECh. D2.3 - Prob. 50ECh. D2.3 - Prob. 51ECh. D2.3 - Variation of parameters Finding a particular...Ch. D2.4 - Explain the meaning of the words damped, undamped,...Ch. D2.4 - In the models discussed in this section, under...Ch. D2.4 - Prob. 3ECh. D2.4 - Prob. 4ECh. D2.4 - Prob. 5ECh. D2.4 - Prob. 6ECh. D2.4 - Prob. 7ECh. D2.4 - Prob. 8ECh. D2.4 - Prob. 9ECh. D2.4 - Free undamped oscillations Solve the initial value...Ch. D2.4 - Prob. 11ECh. D2.4 - Prob. 12ECh. D2.4 - Prob. 13ECh. D2.4 - Prob. 14ECh. D2.4 - Prob. 15ECh. D2.4 - Prob. 16ECh. D2.4 - Free damped oscillations Solve the initial value...Ch. D2.4 - Free damped oscillations Solve the initial value...Ch. D2.4 - Designing a shock absorber A shock absorber must...Ch. D2.4 - Designing a suspension system A spring in a...Ch. D2.4 - Forced damped oscillations 21.A 1-kg block hangs...Ch. D2.4 - Forced damped oscillations 22.A 20-kg block hangs...Ch. D2.4 - Prob. 23ECh. D2.4 - Prob. 24ECh. D2.4 - Prob. 25ECh. D2.4 - Prob. 26ECh. D2.4 - Prob. 27ECh. D2.4 - LCR circuits 28.The circuit in Exercise 27 (10-ohm...Ch. D2.4 - Prob. 29ECh. D2.4 - Prob. 30ECh. D2.4 - Prob. 31ECh. D2.4 - LCR circuits 32.Find the charge on the capacitor...Ch. D2.4 - Explain why or why not Determine whether the...Ch. D2.4 - Prob. 34ECh. D2.4 - Prob. 35ECh. D2.4 - Prob. 36ECh. D2.4 - Prob. 37ECh. D2.4 - Prob. 38ECh. D2.4 - Prob. 39ECh. D2.4 - Prob. 41ECh. D2.4 - Prob. 42ECh. D2.4 - Prob. 43ECh. D2.4 - Prob. 44ECh. D2.4 - Applications 4346.Horizontal oscillators The...Ch. D2.4 - Prob. 46ECh. D2.4 - Prob. 47ECh. D2.4 - Prob. 48ECh. D2.4 - Prob. 49ECh. D2.4 - Prob. 51ECh. D2.4 - Prob. 52ECh. D2.5 - Prob. 1ECh. D2.5 - Prob. 2ECh. D2.5 - Prob. 3ECh. D2.5 - Prob. 4ECh. D2.5 - Prob. 5ECh. D2.5 - Prob. 6ECh. D2.5 - Prob. 7ECh. D2.5 - Prob. 8ECh. D2.5 - Gain and phase lag functions Consider the...Ch. D2.5 - Prob. 10ECh. D2.5 - Prob. 11ECh. D2.5 - Solutions to oscillator equations Consider the...Ch. D2.5 - Prob. 13ECh. D2.5 - Solutions to oscillator equations Consider the...Ch. D2.5 - Prob. 15ECh. D2.5 - Prob. 16ECh. D2.5 - Prob. 17ECh. D2.5 - Prob. 18ECh. D2.5 - Analyzing circuit equations Consider the circuit...Ch. D2.5 - Prob. 20ECh. D2.5 - Prob. 21ECh. D2.5 - Prob. 22ECh. D2.5 - Prob. 23ECh. D2.5 - A high-pass filter Consider the LCR circuit shown...Ch. D2.5 - High-pass filters Consider the high-pass filter...Ch. D2.5 - Prob. 26ECh. D2.5 - High-pass filters Consider the high-pass filter...Ch. D2.5 - Prob. 28ECh. D2 - Prob. 1RECh. D2 - Prob. 2RECh. D2 - Prob. 3RECh. D2 - Prob. 4RECh. D2 - Solving homogeneous equations Find the general...Ch. D2 - Prob. 6RECh. D2 - Prob. 7RECh. D2 - Prob. 8RECh. D2 - Prob. 9RECh. D2 - Prob. 10RECh. D2 - Prob. 11RECh. D2 - Prob. 12RECh. D2 - Prob. 13RECh. D2 - Prob. 14RECh. D2 - Prob. 15RECh. D2 - Prob. 16RECh. D2 - Prob. 17RECh. D2 - Prob. 18RECh. D2 - Prob. 19RECh. D2 - Prob. 20RECh. D2 - Prob. 21RECh. D2 - Forced undamped oscillations A 4-kg block hangs on...Ch. D2 - Free damped oscillations A 0.2-kg block hangs on a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- helppparrow_forward7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forward
- Total marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forwardTotal marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forwardTotal marks 15 པ་ (i) Sketch the trace of the following curve on R2, (t) = (t2 cos(t), t² sin(t)), t = [0,2π]. [3 Marks] (ii) Find the length of this curve. (iii) [7 Marks] Give a parametric representation of a curve : [0, that has initial point (1,0), final point (0, 1) and the length √2. → R² [5 Marks] Turn over. MA-201: Page 4 of 5arrow_forward
- Total marks 15 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly your answer. [5 Marks] 6. (i) Sketch the trace of the following curve on R2, y(t) = (sin(t), 3 sin(t)), t = [0,π]. [3 Marks]arrow_forwardA ladder 25 feet long is leaning against the wall of a building. Initially, the foot of the ladder is 7 feet from the wall. The foot of the ladder begins to slide at a rate of 2 ft/sec, causing the top of the ladder to slide down the wall. The location of the foot of the ladder, its x coordinate, at time t seconds is given by x(t)=7+2t. wall y(1) 25 ft. ladder x(1) ground (a) Find the formula for the location of the top of the ladder, the y coordinate, as a function of time t. The formula for y(t)= √ 25² - (7+2t)² (b) The domain of t values for y(t) ranges from 0 (c) Calculate the average velocity of the top of the ladder on each of these time intervals (correct to three decimal places): . (Put your cursor in the box, click and a palette will come up to help you enter your symbolic answer.) time interval ave velocity [0,2] -0.766 [6,8] -3.225 time interval ave velocity -1.224 -9.798 [2,4] [8,9] (d) Find a time interval [a,9] so that the average velocity of the top of the ladder on this…arrow_forwardTotal marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward
- 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forwardTotal marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY