VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter B, Problem B.69P
To determine
(a)
The mass moments of inertia of the cylinder at the origin.
To determine
(b)
The angles that the principal axes of inertia at O form with the coordinate axes.
To determine
(c)
Show the orientation of the principal axes relative to x, y and z axis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2.
A rectangular prism (brick) has dimensions a (in x) b (in y) and c (in z) directions. Taking the origin at the center determine the mass
moment of inertia about the y axis in terms of total mass m.
i need the answer quickly
Y
YI
R
a
a
image 1
b
Chapter B Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
Ch. B - A thin plate with a mass m is cut in the shape of...Ch. B - Prob. B.2PCh. B - Prob. B.3PCh. B - Prob. B.4PCh. B - A piece of thin, uniform sheet metal is cut to...Ch. B - Prob. B.6PCh. B - Prob. B.7PCh. B - Prob. B.8PCh. B - Prob. B.9PCh. B - Prob. B.10P
Ch. B - Prob. B.11PCh. B - Prob. B.12PCh. B - Determine by direct integration the mass moment of...Ch. B - Prob. B.14PCh. B - A thin, rectangular plate with a mass m is welded...Ch. B - A thin steel wire is bent into the shape shown....Ch. B - Prob. B.17PCh. B - Prob. B.18PCh. B - Prob. B.19PCh. B - Prob. B.20PCh. B - Prob. B.21PCh. B - Prob. B.22PCh. B - Prob. B.23PCh. B - Prob. B.24PCh. B - Prob. B.25PCh. B - Prob. B.26PCh. B - Prob. B.27PCh. B - Prob. B.28PCh. B - Prob. B.29PCh. B - Prob. B.30PCh. B - Prob. B.31PCh. B - Determine the mass moments of inertia and the...Ch. B - Prob. B.33PCh. B - Prob. B.34PCh. B - Prob. B.35PCh. B - Prob. B.36PCh. B - Prob. B.37PCh. B - Prob. B.38PCh. B - Prob. B.39PCh. B - Prob. B.40PCh. B - Prob. B.41PCh. B - Prob. B.42PCh. B - Prob. B.43PCh. B - Prob. B.44PCh. B - A section of sheet steel 2 mm thick is cut and...Ch. B - Prob. B.46PCh. B - Prob. B.47PCh. B - Prob. B.48PCh. B - Prob. B.49PCh. B - Prob. B.50PCh. B - Prob. B.51PCh. B - Prob. B.52PCh. B - Prob. B.53PCh. B - Prob. B.54PCh. B - Prob. B.55PCh. B - Determine the mass moment ofinertia of the steel...Ch. B - Prob. B.57PCh. B - Prob. B.58PCh. B - Determine the mass moment of inertia of the...Ch. B - Prob. B.60PCh. B - Prob. B.61PCh. B - Prob. B.62PCh. B - Prob. B.63PCh. B - Prob. B.64PCh. B - Prob. B.65PCh. B - Prob. B.66PCh. B - Prob. B.67PCh. B - Prob. B.68PCh. B - Prob. B.69PCh. B - Prob. B.70PCh. B - For the component described in the problem...Ch. B - Prob. B.72PCh. B - For the component described in the problem...Ch. B - Prob. B.74P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The moment of inertia of the plane region about the x-axis and the centroidal x-axis are Ix=0.35ft4 and Ix=0.08in.4, respectively. Determine the coordinate y of the centroid and the moment of inertia of the region about the u-axis.arrow_forwardThe moments of inertia of the plane region about the x- and u-axes are Ix=0.4ft4 and Iu=0.6ft4, respectively. Determine y (the y-coordinate of the centroid C) and Ix (the moment of inertia about the centroidal x-axis).arrow_forwardDetermine the product of inertia with respect to the x- and y-axes for the quarter circular, thin ring (tR) by integration.arrow_forward
- Solve it correctly please. Iarrow_forwardQuestion 4 Calculate the moments of inertia I, and I, of the composite region consisting of the rectangular tri- angle (T) and the wedge (W) with radius r. The wedge is centered symmetrically about the y-axis and spans an angle of 30°. Express your answer in terms of r. Warrow_forwardA/23 The plane figure is symmetrical with respect to the 45° line and has an area of 1600 mm². Its polar mo- ment of inertia about its centroid C is 40(104) mm¹. Compute (a) the polar radius of gyration about O and (b) the radius of gyration about the xo-axis. Ans. (a) ko = 45.3 mm, (b) kxo = 11.18 mm 30 mm 30 mm 45° CHarrow_forward
- Please solve very soonarrow_forwardFor the shape below, the moment :of inertia about X-axis is 25 mm 250 mm 25 mm 25 mm |x= 1791666667 mm^4 O |x= 1792226667 mm^4 O Ix= 222135416.7 mm^4 O 200 mmarrow_forwardthe ratio moment of inertia of a rectangular shape to triangular shape having the same base width(b) and height(h) with respect to the baseline would bearrow_forward
- Determine the location of centroidal x and y and the moment of inertia Ix of the figure shown. Use the parallel axis theorem. Where B = 9, and Y = 82arrow_forwardFor the same case, consider the moment of inertia about each of the four axes. About which axis will the MoI be the smallest number?arrow_forwardFor the body shown. If point P3 is the center of mass for rod part P1-P2, and point P4 is the center of mass for rod part P3-P5, and P6 is the center of mass of the disk part. Find the mass moment of inertia around axis perpendicular to the page and passes through point P5. Given; L = 1 m, mass density of rod parts = 5 kg / m, mass density of disk = 12 Kg / m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY