Concept explainers
(a)
The principal mass moment of inertia at the origin
Answer to Problem B.72P
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
Explanation of Solution
Given information:
The thin bent plate with uniform density, the weight of both the plates is
The figure below illustrate different centroidal axis.
Figure-(1)
Write the expression for the mass of plate 1.
Here, the weight of both the plates is
Write the expression for the mass of plate 2.
Here, the weight of both the plates is
Write the expression of position vector of the line joining
Here, the vector along the line joining the points
Write the expression for the magnitude of position vector
Here, the magnitude of the position vector
Write the expression for unit vector along
Here, the unit vector along
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
Write the expression of mass moment of inertia of section 1 about
Here, the mass moment of inertia of section 1 about
Write the expression of mass moment of inertia of section 2 about
Here, the mass moment of inertia of section 2 about
Write the expression of total mass moment of inertia about
Here, the total mass moment of inertia about
From, the symmetry in above figure about
Here, the product mass moment of inertia in
From, the symmetry in above figure about
Write the expression for product of mass moment of inertia in
Here, the product mass moment of inertia is
Write the expression for product mass moment of inertia in
Here, the product mass moment of inertia is
Write the expression for product mass moment of inertia in
Here, the product mass moment of inertia in
Write the expression of principal mass moment of inertia
Here, the principal moment of inertia is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Solving above cubic Equation to get the values of
Conclusion:
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
The principal mass moment of inertia at the origin
(b)
The determine the orientation of principal axis at origin
Answer to Problem B.72P
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
Explanation of Solution
The figure below represents the orientation of principal axis with respect to the Cartesian coordinates.
Figure-(1)
Write the equation of direction cosines formed by principal axes 1.
Here, the principal mass moment of inertia about principal axis 1 is
Write the expression of orientation of direction cosine about principal axis 1 in
Here, the orientation of direction cosine about principal axis 1 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 1 in
Write the expression of orientation of direction cosine about principal axis 1 in
Here, the orientation of direction cosine about principal axis 1 in
Write the equation of direction cosines formed by principal axes 2.
Here, the principal mass moment of inertia about principal axis in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 is
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 2 in
Write the equation of direction cosines formed by principal axes 3.
Here, the principal mass moment of inertia about principal axis 3 is
Write the expression of orientation of direction cosine about principal axis 3 in
Here, the orientation of direction cosine about principal axis 3 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 3 in
Write the expression of orientation of direction cosine about principal axis 2 in
Here, the orientation of direction cosine about principal axis 3 in
Calculation:
Substitute
Substitute
Add Equation (XXXIX) and (XL).
Subtract Equation (XXXIX) and (XL).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Add Equation (XLIV) and(XLV).
Subtract Equation (XLIV) and(XLV).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Add Equation (XLIX) and (L).
Substract Equation (XLIX) and (L).
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of first principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of second principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
The orientation of third principal axis at origin
Want to see more full solutions like this?
Chapter B Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- . The thin plate shown is composed of a rectangular plate of mass 102 kg and a quarter-circular plate of mass 60 kg. Which of the following best pproximates the mass moment of inertia of the shape about the x-axis? ´r = 1.500 m 3.00 marrow_forwardThe machine element shown is fabricated from steel, where h = 64 mm. The density of Steel is y 40 mm 20 mm- 80 mm 40 mm 20 mm 40 mm Determine the mass moment of inertia of the assembly with respect to the z axis. The mass moment of inertia of the assembly with respect to the z axis is x 10-3 kg-m².arrow_forwardThe thin plate shown is composed of a square plate of mass 80 kg and a quarter-circular plate of mass 50 kg. What is the mass moment of inertia of the shape about the y-axis?arrow_forward
- 100 mm Problem (3) A 3-mm thick piece of aluminum sheet metal is cut and bent into the machine component shown. The density of aluminum is 2770 kg/m³. Determine the mass moment of inertia of the component with respect to the y-axis. 180 mm 160 mm 240 mm 160 mmarrow_forwardChoose the bestarrow_forwardKindly answer correctly. Please show the necessary stepsarrow_forward
- By the method of this article, determine the moments of inertia about the x-and y-axes of the trapezoidal area. 1.5b 1.5b 1.3b b Answers: Ix= i ba baarrow_forwardThe two small spheres of mass m each are connected by the light rigid rod which lies in the plane. Determine the mass moments of inertia of the assembly about the x-, y-, and z- axes. Use the values m = 2.9 kg and L = 545 mm. m Answers: Ixx = lyy Izz 11 m kg.m² kg-m² kg.m²arrow_forward2. A rectangular prism (brick) has dimensions a (in x) b (in y) and c (in z) directions. Taking the origin at the center determine the mass moment of inertia about the y axis in terms of total mass m.arrow_forward
- A homogenous thin square plate shown has a mass of 60 kg. What is the mass moment of inertia of the square plate shown about the x-axis and y-axis?arrow_forward1. Determine the x-coordinate of the center of mass of the entire assembly 2. Determine the y-coordinate of the center of mass of the entire assembly 3. Determine the moment of inertia of the entire assembly with respect to the y-axisarrow_forwardDetermine by direct integration the mass moment of inertia with respect to the z axis of the right circular cylinder shown, assuming that it has a uniform density and a mass m.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY