
Concept explainers
For the component described in the problem indicated,determine (a) the principal mass moments of inertia at the origin (b) the principal axes of inertia at the origin. Sketch the body and show the orientation of the principal axes of inertia relative to the x, y, and z axes.
Probs. B.35 and B.39

(a)
The principal mass moment of inertias at the origin.
Answer to Problem B.71P
The principal mass moment of inertias at the origin are
Explanation of Solution
Given information:
The density of the steel is
The following figure represents the given system.
Figure-(1)
Concept used:
Write the expression for the mass of component 1.
Here, the mass of component 1 is
Write the expression for the volume of the component 1.
Here, the sides of the component is
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the mass of component 2.
Here, the mass of component 2 is
Write the expression for volume of the component 2.
Here, the sides of the component are
Write the expression for the mass of component 3.
Here, the mass of component 3 is
Write the expression for volume of the component 3.
Here, the diameter of the circle is
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass moment of inertia for component 1.
Here, the mass moment of inertia for component 1 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia for component 2.
Here, the mass moment of inertia for component 2 is
Write the expression for the mass moment of inertia with respect to centroidal axis.
Write the expression for the centroidal axis from the reference axis.
Write the expression for the mass moment of inertia with respect to centroidal axis.
Here, the mass moment of inertia for component 3 is
Write the expression for the mass moment of inertia for component 3.
Write the expression for the distance of the component 3.
Write the expression for the mass moment of inertia with respect to
Write the expression for the mass of component 1.
Here, the mass of component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass moment of inertia for component 1.
Here, the products of the inertia of the body with respect to centroidal axis for component 1 is
Write the expression for the mass of component 2.
Here, the mass of component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass moment of inertia for component 2.
Here, the products of the inertia of the body with respect to centroidal axis for component 2 is
Write the expression for the mass of component 3.
Here, the mass of component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass moment of inertia for component 3.
Here, the products of the inertia of the body with respect to centroidal axis for component 3 is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the mass product of inertia.
Here, the mass product of inertia is
Write the expression for the volume of the component 1.
Here, the sides of the component is
Write the expression for volume of the component 2.
Here, the sides of the component is
Write the expression for volume of the component 3.
Here, the diameter of the circle is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
The principal mass moment of inertia at the origin is calculated as follows:
After solving above equation,
Conclusion:
The principal mass moment of inertias at the origin are
(b)

The principal axis about the origin.
Answer to Problem B.71P
The principal axis about the origin are
Explanation of Solution
Given information:
The density of the steel is
The following figure represents the given system.
Figure-(1)
Calculation:
The direction cosine is calculated as follows:
Substitute the values from the sub-part (a) in above equations as follows:
After solving above equations,
Direction cosine in x direction is calculated as follows:
Direction cosine in y and z direction are,
So, the direction is calculated as follows:
Again,
The direction cosine is calculated as follows:
Substitute the values from the sub-part (a) in above equations as follows:
After solving above equations,
Direction cosine in x direction is calculated as follows:
Direction cosine in y and z direction are,
So, the direction is calculated as follows:
Similarly,
The direction cosine is calculated as follows:
Substitute the values from the sub-part (a) in above equations as follows:
After solving above equations,
Direction cosine in x direction is calculated as follows:
Direction cosine in y and z direction are,
So, the direction is calculated as follows:
The sketch is shown below:
Conclusion:
So, the principal axis about the origin are
Want to see more full solutions like this?
Chapter B Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- 2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward
- 2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward(read image) (answer given)arrow_forward
- A cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forward
- T₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





