VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter B, Problem B.37P
To determine

The mass moment of inertia of the wire with respect to x ,y and z axis.

Expert Solution & Answer
Check Mark

Answer to Problem B.37P

The mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2.

The mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

The mass moment of inertia of the wire with respect to z axis is 30.5983×103lbfts2

Explanation of Solution

Given information:

The diameter of the formed steel wire is 18in and the specific weight of the steel is 490lb/ft3.

The below figure represent the schematic diagram of the wire.

VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS, Chapter B, Problem B.37P

Figure-(1)

Expression of mass of the steel wire.

m=ρSTV    ......(I)

Here, density of the steel wire is ρST and the volume of the steel wire is V.

Expression of density of the steel wire.

ρST=γSTg    ......(II)

Here, the specific weight of the steel wire is γST and the acceleration due to gravity is g.

Substitute γSTg for ρST in Equation (I).

m=(γSTg)V    ......(III)

For section (1).

Substitute m1 for m and V1 for V in Equation (III).

m1=(γSTg)V1    ......(IV)

Expression of volume of the steel wire after formation for section (1).

V1=(π4d12)(πd)    ......(V)

Here, the diameter of the formed wire is d1 and the diameter of the wire is d.

For section (2).

Substitute m2 for m and V2 for V in Equation (III).

m2=(γSTg)V2    ......(VI)

Expression of volume of the steel wire after formation for section (2).

V2=(π4d12)(πd)    ......(VII)

For section (3).

Substitute m3 for m and V3 for V in Equation (III).

m3=(γSTg)V3    ......(VIII)

Expression of volume of the steel wire after formation for section (3).

V3=(π4d12)(d)    ......(IX)

For section (4).

Substitute m4 for m and V4 for V in Equation (III).

m4=(γSTg)V4    ......(X)

Expression of volume of the steel wire after formation for section (4).

V4=(π4d12)(d)    ......(XI)

Expression of Moment of inertia about x axis of the wire.

Ix=(Ix)1+(Ix)2+(Ix)3+(Ix)4    ......(XII)

Here, the moment of inertia of section (1) about the x axis is (Ix)1, the moment of inertia of section (2) about the x axis is (Ix)2 ,the moment of inertia of section (3) about the x axis is (Ix)3 and the moment of inertia of section (4) about the x axis is (Ix)4.

Expression of moment of inertia of section (1) about the x axis.

(Ix)1=12m1d2    ......(XIII)

Expression of moment of inertia of section (2) about the x axis.

(Ix)2=12m2d2+m2d2    ......(XIV)

Expression of moment of inertia of section (3) about the x axis.

(Ix)3=112m3d2+m3{(d2)2+d2}    ......(XV)

Expression of moment of inertia of section (4) about the x axis.

(Ix)4=112m4d2+m4{(d2)2+d2}    ......(XVI)

Expression of Moment of inertia about y axis of the wire.

Iy=(Iy)1+(Iy)2+(Iy)3+(Iy)4    ......(XVII)

Here, the moment of inertia of section (1) about the y axis is (Iy)1, the moment of inertia of section (2) about the y axis is (Iy)2 ,the moment of inertia of section (3) about the y axis is (Iy)3 and the moment of inertia of section (4) about the y axis is (Iy)4.

Expression of moment of inertia of section (1) about the y axis.

(Iy)1=m1d2    ......(XVIII)

Expression of moment of inertia of section (2) about the y axis.

(Iy)2=m2d2    ......(XIX)

Expression of moment of inertia of section (3) about the y axis.

(Iy)3=m3d2    ......(XX)

Expression of moment of inertia of section (4) about the y axis.

(Iy)4=m4d2    ......(XXI)

Expression of Moment of inertia about z axis of the wire.

Iz=(Iz)1+(Iz)2+(Iz)3+(Iz)4    ......(XXII)

Here, the moment of inertia of section (1) about the z axis is (Iz)1, the moment of inertia of section (2) about the z axis is (Iz)2 ,the moment of inertia of section (3) about the z axis is (Iz)3 and the moment of inertia of section (4) about the z axis is (Iz)4.

Expression of moment of inertia of section (1) about the z axis.

(Iz)1=12m1d2    ......(XXIII)

Expression of moment of inertia of section (2) about the z axis.

(Iz)2=12m2d2+m2d2    ......(XXIV)

Expression of moment of inertia of section (3) about the z axis.

(Iz)3=13m3d2    ......(XXV)

Expression of moment of inertia of section (4) about the z axis.

(Iz)4=13m4d2    ......(XXVI)

Calculation:

Substitute 18in for d1 and 18in for d in Equation (V).

V1=(π4(18in)2)(π(18in))=(0.01227in2)(π(18in))=(0.694in3)(1ft12in)(1ft12in)(1ft12in)=4.016×104ft3

Substitute 4.016×104ft3 for V2, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (IV).

m1=(490lb/ft332.2ft/s2)(4.016×104ft3)=(15.217lbs2/ft4)(4.016×104ft3)=6.1112×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (VII).

V2=(π4(18in)2)(π(18in))=(0.01227in2)(π(18in))=(0.694in3)(1ft12in)(1ft12in)(1ft12in)=4.016×104ft3

Substitute 4.016×104ft3 for V2, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (VI).

m2=(490lb/ft332.2ft/s2)(4.016×104ft3)=(15.217lbs2/ft4)(4.016×104ft3)=6.1112×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (IX).

V3=(π4(18in)2)(18in)=(0.01227in2)(18in)=(0.22086in3)(1ft12in)(1ft12in)(1ft12in)=1.2783×104ft3

Substitute 1.2783×104ft3 for V3, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (VIII).

m3=(490lb/ft332.2ft/s2)(1.2783×104ft3)=(15.217lbs2/ft4)(1.2783×104ft3)=1.945×103lbs2/ft

Substitute 18in for d1 and 18in for d in Equation (XI).

V4=(π4(18in)2)(18in)=(0.01227in2)(18in)=(0.22086in3)(1ft12in)(1ft12in)(1ft12in)=1.2783×104ft3

Substitute 1.2783×104ft3 for V4, 490lb/ft3 for γST and 32.2ft/s2 for g in Equation (X).

m4=(490lb/ft332.2ft/s2)(1.2783×104ft3)=(15.217lbs2/ft4)(1.2783×104ft3)=1.945×103lbs2/ft

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XIII).

(Ix)1=12(6.1112×103lbs2/ft)(18in)2=12(6.1112×103lbs2/ft){(18in)(1ft12in)}2=12(6.1112×103lbs2/ft)(2.25ft2)=6.8751×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XIV).

(Ix)2=12(6.1112×103lbs2/ft)(18in)2+(6.1112×103lbs2/ft)(18in)2=[12(6.1112×103lbs2/ft){(18in)(1ft12in)}2+(6.1112×103lbs2/ft){(18in)(1ft12in)}2]=(6.8751×103fts2)+(13.7502×103fts2)=20.6252×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XV).

(Ix)3=[112(1.945×103lbs2/ft)(18in)2+(1.945×103lbs2/ft){(18in2)2+(18in)2}]=[112(1.945×103lbs2/ft){(18in)(1ft12in)}2+(1.945×103lbs2/ft)[{(18in2)(1ft12in)}2+{(18in)(1ft12in)}2]]=(0.3647×103lbfts2)+(5.4712×103lbfts2)=5.8359×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XVI).

(Ix)4=[112(1.945×103lbs2/ft)(18in)2+(1.945×103lbs2/ft){(18in2)2+(18in)2}]=[112(1.945×103lbs2/ft){(18in)(1ft12in)}2+(1.945×103lbs2/ft)[{(18in2)(1ft12in)}2+{(18in)(1ft12in)}2]]=(0.3647×103lbfts2)+(5.4712×103lbfts2)=5.8359×103lbfts2

Substitute 6.8751×103lbfts2 for (Ix)1, 20.6252×103lbfts2 for (Ix)2, 5.8359×103lbfts2 for (Ix)3 and 5.8359×103lbfts2 for (Ix)4 in Equation (XII).

Ix=[(6.8751×103lbfts2)+(20.6252×103lbfts2)+(5.8359×103lbfts2)+(5.8359×103lbfts2)]=(27.5003×103lbfts2)+(11.6718×103lbfts2)=39.1721×103lbfts2

Thus, the mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XVIII).

(Iy)1=(6.1112×103lbs2/ft)(18in)2=(6.1112×103lbs2/ft){(18in)(1ft12in)}2=(6.1112×103lbs2/ft)(2.25ft2)=13.7502×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XIX).

(Iy)2=(6.1112×103lbs2/ft)(18in)2=(6.1112×103lbs2/ft){(18in)(1ft12in)}2=(6.1112×103lbs2/ft)(2.25ft2)=13.7502×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XX).

(Iy)3=(1.945×103lbs2/ft)(18in)2=(1.945×103lbs2/ft){(18in)(1ft12in)}2=4.3769×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XXI).

(Iy)4=(1.945×103lbs2/ft)(18in)2=(1.945×103lbs2/ft){(18in)(1ft12in)}2=4.3769×103lbfts2

Substitute 13.7502×103lbfts2 for (Iy)1, 13.7502×103lbfts2 for (Iy)2, 4.3769×103lbfts2 for (Ix)3 and 4.3769×103lbfts2 for (Ix)4 in Equation (XVII).

Iy=[(13.7502×103lbfts2)+(13.7502×103lbfts2)+(4.3769×103lbfts2)+(4.3769×103lbfts2)]=(27.5004×103lbfts2)+(8.7538×103lbfts2)=36.2542×103lbfts2

Thus, the mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

Substitute 6.1112×103lbs2/ft for m1 and 18in for d in Equation (XXIII).

(Iz)1=12(6.1112×103lbs2/ft)(18in)2=12(6.1112×103lbs2/ft){(18in)(1ft12in)}2=12(6.1112×103lbs2/ft)(2.25ft2)=6.8751×103lbfts2

Substitute 6.1112×103lbs2/ft for m2 and 18in for d in Equation (XXIV).

(Iz)2=12(6.1112×103lbs2/ft)(18in)2+(6.1112×103lbs2/ft)(18in)2=[12(6.1112×103lbs2/ft){(18in)(1ft12in)}2+(6.1112×103lbs2/ft){(18in)(1ft12in)}2]=(6.8751×103fts2)+(13.7502×103fts2)=20.6252×103lbfts2

Substitute 1.945×103lbs2/ft for m3 and 18in for d in Equation (XXV).

(Iz)3=13(1.945×103lbs2/ft)(18in)2=13(1.945×103lbs2/ft){(18in)(1ft12in)}2=1.4590×103lbfts2

Substitute 1.945×103lbs2/ft for m4 and 18in for d in Equation (XXVI).

(Iz)4=13(1.945×103lbs2/ft)(18in)2=13(1.945×103lbs2/ft){(18in)(1ft12in)}2=1.4590×103lbfts2

Substitute 6.8751×103lbfts2 for (Iz)1, 20.6252×103lbfts2 for (Iz)2, 1.4590×103lbfts2 for (Iz)3 and 1.4590×103lbfts2 for (Iz)4 in Equation (XXII).

Iz=[(6.8751×103lbfts2)+(20.6252×103lbfts2)+(1.4590×103lbfts2)+(1.4590×103lbfts2)]=(27.5003×103lbfts2)+(3.098×103lbfts2)=30.5983×103lbfts2

Thus, the mass moment of inertia of the wire with respect to z axis is 30.5983×103lbfts2

Conclusion:

The mass moment of inertia of the wire with respect to x axis is 39.1721×103lbfts2.

The mass moment of inertia of the wire with respect to y axis is 36.2542×103lbfts2.

The mass moment of inertia of the wire with respect to z axis is 30.5983×103lbfts2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
h Determine the moment of inertia and radius of gyration of the composite shape with respect to the x- and y-axes knowing that b=4 cm, h = 5 cm, T₁ = 2 cm, and r₁ = 1.333 cm. For the x-axis L₂ = b For the y axis I₂ = k₂ = ky =
A 2-mm thick piece of sheet steel is cut and bent into the machine component shown. Knowing that the density of steel is 7850 kg/m3 , determine the mass moment of inertia of the component with respect to each of the coordinate axes.
The uniform rod of length 4b and mass m is bent into the shape shown. The diameter of the rod is small compared with its length. Determine the moments of inertia of the rod about the three coordinate axes. Use the values m = 9.7 kg and b = 650 mm. Answers: Ixx = i lyy= Izz i i kg-m² kg.m² kg.m²

Chapter B Solutions

VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS

Ch. B - Prob. B.11PCh. B - Prob. B.12PCh. B - Determine by direct integration the mass moment of...Ch. B - Prob. B.14PCh. B - A thin, rectangular plate with a mass m is welded...Ch. B - A thin steel wire is bent into the shape shown....Ch. B - Prob. B.17PCh. B - Prob. B.18PCh. B - Prob. B.19PCh. B - Prob. B.20PCh. B - Prob. B.21PCh. B - Prob. B.22PCh. B - Prob. B.23PCh. B - Prob. B.24PCh. B - Prob. B.25PCh. B - Prob. B.26PCh. B - Prob. B.27PCh. B - Prob. B.28PCh. B - Prob. B.29PCh. B - Prob. B.30PCh. B - Prob. B.31PCh. B - Determine the mass moments of inertia and the...Ch. B - Prob. B.33PCh. B - Prob. B.34PCh. B - Prob. B.35PCh. B - Prob. B.36PCh. B - Prob. B.37PCh. B - Prob. B.38PCh. B - Prob. B.39PCh. B - Prob. B.40PCh. B - Prob. B.41PCh. B - Prob. B.42PCh. B - Prob. B.43PCh. B - Prob. B.44PCh. B - A section of sheet steel 2 mm thick is cut and...Ch. B - Prob. B.46PCh. B - Prob. B.47PCh. B - Prob. B.48PCh. B - Prob. B.49PCh. B - Prob. B.50PCh. B - Prob. B.51PCh. B - Prob. B.52PCh. B - Prob. B.53PCh. B - Prob. B.54PCh. B - Prob. B.55PCh. B - Determine the mass moment ofinertia of the steel...Ch. B - Prob. B.57PCh. B - Prob. B.58PCh. B - Determine the mass moment of inertia of the...Ch. B - Prob. B.60PCh. B - Prob. B.61PCh. B - Prob. B.62PCh. B - Prob. B.63PCh. B - Prob. B.64PCh. B - Prob. B.65PCh. B - Prob. B.66PCh. B - Prob. B.67PCh. B - Prob. B.68PCh. B - Prob. B.69PCh. B - Prob. B.70PCh. B - For the component described in the problem...Ch. B - Prob. B.72PCh. B - For the component described in the problem...Ch. B - Prob. B.74P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY