To find the function is converges or diverges.
The series converges.
Answer to Problem 52E
The series converges.
Explanation of Solution
Given:
The given
Calculation:
For
If the integral diverges, it must go to infinity and the first inequality forces the partial sums of the series to go to infinity as well, so the series is divergent. If the integral converges, then the second inequality puts an upper bound on the partial sums of the series, and since they are a non-decreasing sequence, they must converge to a finite sum for the series.
Chapter 9 Solutions
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning