a.
To find: The interval of convergence of the series.
a.
Answer to Problem 49E
The interval of convergence of the series is
Explanation of Solution
Given information:
Calculation:
By applying the Ratio Test and looking at the interval's endpoints, one can determine the interval where the series will converge.
Taking the absolute value of the terms in the series and looking at the following limit, only using the Ratio Test for series with non-negative terms.
The series converges absolutely based on the previous step if
The left endpoint of the interval is given by,
Where,
The series does not absolutely converge at the left endpoint since the
Analyze if the series conditionally converges at the left endpoint. The series at the left endpoint according to the preceding step is
The series converges at the left endpoint according to the Alternating Series Test because
The right endpoint of the interval is given by,
Where,
The series does not converge at the proper endpoint since it has only positive terms, is absolute convergent if it does, never converges conditionally, and diverges according to the
From the above steps it is known that,
The interval of convergence of the series is,
Therefore, the interval of convergence of the series is
b.
To find: For what value of
b.
Answer to Problem 49E
The value of
Explanation of Solution
Given information:
Calculation:
From part (a) it is known that,
The interval on which the series converges absolutely is given by,
Using the Ratio test,
The series diverges if,
Then, the series converges absolutely on
Therefore, the value of
c.
To find: For what value of
c.
Answer to Problem 49E
The value of
Explanation of Solution
Given information:
Calculation:
Identifying the intervals in parts (a) and (b) on which the series converges and on which it converges absolutely.
These findings can be used to determine where the series conditionally converges by looking at the conditional convergence of the endpoints.
From part (a) it is known that,
The interval on which the series converges is given by,
But from part (a) and part (b) it is found that it does not converge absolutely at this point.
Then, the series converges conditionally on
Therefore, the value of
Chapter 9 Solutions
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.arrow_forwardwrite it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forward
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning