Concept explainers
To explain how the roots of a
Answer to Problem 44HP
The roots of the quadratic equation, when represented on a graph, intercept on the x-axis.
Explanation of Solution
Given information :
The roots of the quadratic equation.
When a quadratic equation is represented on a graph, the curve is parabolic in nature. It may be an upward parabolic curve or a downward parabolic curve.
The roots of the said equation always intercept on the x-axis. If there are two roots, they intercept twice, if there is one root, the curve intercepts once. If there no roots or they are imaginary, the curve does not intercept at the x-axis.
The points where the roots intercept the x-axis, are known as zeros and their points are represented in the form of
Chapter 9 Solutions
Algebra 1, Homework Practice Workbook (MERRILL ALGEBRA 1)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education