Concept explainers
9.29 and 9.30 Determine the reaction at the roller support and the deflection at point C.
Fig. P9.30
Find the reaction at the roller support and the deflection at point C of the beam.
Answer to Problem 30P
The reaction at the roller support B is
The deflection at point C of the beam is
Explanation of Solution
Consider a section at a distance x from left end A of the section AC.
Show the free-body diagram of the section AC as in Figure 1.
Determine the moment at the section by taking moment about the section.
Write the second order differential equation as follows;
Here, the moment at the corresponding section is
Substitute
Integrate the equation with respect to x;
Integrate the Equation (2) with respect to x.
Show the free-body diagram of the section BC as in Figure 2.
Determine the moment at the section by taking moment about the section.
Substitute
Integrate the equation with respect to x;
Integrate the Equation (4) with respect to x.
Boundary condition 1:
At the point A;
Substitute 0 for x and 0 for y in Equation (3).
Boundary condition 2:
At the point A;
Substitute 0 for x and 0 for
Boundary condition 3:
At the point C;
Equate Equation (2) and (4).
Substitute
Boundary condition 4:
At the point C;
Equate Equation (3) and (5).
Substitute
Boundary condition 5:
At the point B;
Substitute L for x, 0 for y,
Show the free-body diagram of the beam AB as in Figure 3.
Resolve the vertical component of forces as follows;
Take moment about the point A as follows;
Substitute
Therefore, the reaction at the roller support B is
Substitute
Substitute
At point C;
Substitute
Therefore, the deflection at point C of the beam is
Want to see more full solutions like this?
Chapter 9 Solutions
Mechanics of Materials, 7th Edition
- Fig. P9.78 E 9.79 and 9.80 For the uniform beam shown, determine (a) the reaction at A, (b) the reaction at B. ***** A Fig. P9.80 -L/2- Answer (a) 7 wL/128 1. (b)57 wL/128 1:9wL2/128. C -L/2- Barrow_forward9.11 For the cantilever beam shown, determine the slope and deflection at (a) point B, (b) point C. Use E = 29 × 106 psi. w = 600 lb/ft A -6 ft- Fig. P9.11 B 1200 lb --+-3A- H W 8x 15arrow_forwardP = 150 kN PROBLEM 9.13 For the beam and loading shown, determine the deflection at point C. Use E = 200 GPa. W360 x 44 a = 1.5 m -L= 4.5 m- [x = 0, y = 0] [x = a, y = y] [x = L. y = 0] dy a, dx dy dx Yc = 9.2 mm,arrow_forward
- The two beams shown have the same cross section and are joined by a hinge at C. For the loading shown, determine (a) the slope at point A, (b) the deflection at point B. Use E=29 *106 psiarrow_forwardQ.4) Determine the deflection of the beam at point C. 7.arrow_forward4. For the truss structure shown, determine the vertical deflection at B by using the Principle of Virtual Work. The area of each member is 10 sq. in. E = 30x10 psi. 50 kips B 15 A 15 D C 20¹ 20¹arrow_forward
- 6.36 Using Castigliano's method on the wire form shown determine the vertical deflection of point A considering bending only. The rigidity of the cross sec- tion is El. R Problem 6.36 Barrow_forward6.33 For the truss shown use Castigliano’s method to determine the vertical deflec- tion of point C. All members are of equal length, area, and modulus of elas- ticity L, A, and E, respectively. H B Carrow_forwardCurrent Attempt in Progress For the beam and loading shown, use the double-integration method to determine (a) the equation of the elastic curve for segment AB of the beam, (b) the deflection at B, and (c) the slope at A. Assume that El is constant for the beam. Let P = 25 kN, L = 5.5 m, E = 195 GPa, and I = 130 x 106 mm4. P A B Answer: (b) vg = i mm (a) Өд - і rad Save for Later Attempts: 0 of 1 used Submit Answerarrow_forward
- A beam ABCD, 6 m long, is simply-supported at the right-hand end D and at a point B 1 m from the left hand end A. It carries a vertical load of 10 kN at A, a second concentrated load of 20 kN at C, 3 m from D, and a uniformly distributed load of 10 kN/m between C and D. Determine the position and magnitude of the maximum deflection if E = 208 GN/m2 and I = 35 x10^-6 m4.arrow_forwardParrow_forwardA round steel bar is to be used to carry a single concentrated load of 3.0 kN at the center of a 700 mm long span on simple supports. Determine the required diameter of the bar if its deflection must not exceed 0.12 mm.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY