
Concept explainers
9.91 You want to heat the air in your house with natural gas (CH4). Assume your house has 275 m2(ahout 2800 ft2) of floor area and that the ceilings are 2.50 m from the floors. The air in the house has a molar heat capacity of 29.1 J mol-l K-l. (The number of moles of air in the house may he found by assuming that the average molar mass of air is 28.9 g/mol and that the density of air at these temperatures is 1.22 g/L.) What mass of methane do you have to burn to heat the air from 15.0 to 22.0°C?

Interpretation:
The mass of methane required to raise the temperature of air in the house from
Concept Introduction:
- Chemical reactions proceed through absorption (endothermic) or evolution (exothermic) of heat.
- The quantity of heat absorbed or released depends on the amount of the substance, its specific heat capacity and the change in temperature.
- Specific heat capacity is the amount of heat required to raise a unit mass of a given substance through a unit degree increase in temperature.
Answer to Problem 9.85PAE
Solution: Mass of methane required = 4.25 kg
Explanation of Solution
Given: Initial temperature of air (T1) =
Final temperature of air (T2) =
Change in temperature (
Dimensions (volume) of the house =
Specific heat capacity of air, cair = 29.1 J/K-mol
Formula:
1. Enthalpy of combustion:
nproducts and nreactants are the number of moles of products and reactants respectively
2. Heat required to raise the temperature of air:
mair = mass of air
cair = specific heat capacity of air
Calculation:
Step I: Find enthalpy of combustion of methane
Based on equation 1 we have:
Substituting for the respective enthalpies formation:
Step II: Calculate the heat required to raise the temperature of air
Volume of air = volume of the room = 687.5 m3 = 687500 L
Now, the density of air = 1.22 g/L
Therefore, the mass of air occupied in the room =
The number of moles of air (nair) =
Based on equation 2:
Step III: Calculate the mass of methane
From Step II, 1 mole of methane releases an energy = 890.2 kJ
The number of moles of methane required corresponding to 236475.3 kJ energy =
=
1 mole of methane (CH4) = 16 g
The mass corresponding to 265.64 moles =
The mass of methane required to raise the temperature of air in the house from
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
- Question 3 What best describes the product of the following reaction? 1. CH3CH2MgBr (2 eq) 2. H a new stereocenter will not be formed a new stereocenter will be formed an alkyl halide will result an alkane will result an aromatic compound will result 1 ptsarrow_forwardRank the following from most to least reactive toward nucleophilic attack. 1. [Select] [Select] 2. Acyl halide Aldehyde 3. Carboxylate ion 4. Carboxylic acid Ketone 5. [Select]arrow_forwardQuestion 10 1 pts Which of the following is the most accurate nomenclature? 1-hydroxy-1-methyldecane-4,7-dione 2-hydroxy-2-methyldecane-5,8-dione 4,6-dioxo-2-methyldecane-2-ol 9-hydroxy-9-methyldecane-3,6-dione 8-hydroxy-8-methylnonane-3,6-dione OHarrow_forward
- Could you please explain whether my thinking is correct or incorrect regarding how I solved it? Please point out any mistakes in detail, with illustrations if needed.arrow_forwardWhat are the most proper reagents to achieve these products? سد 1. 2. OH ○ 1. BrMgC6H6; 2. H+ ○ 1. BrMgCH2CH2CH2CH2CH3; 2. H+ O 1. CH3CH2CHO; 2. H+ O 1. BrMgCH2CH3; 2. H+arrow_forwardProvide the IUPAC (systematic) name only for the following compound. Dashes, commas, and spaces must be correct. Harrow_forward
- Please use the nernst equation to genereate the Ion Selective Electrode Analysis standard curve within my excel spread sheet. Nernst Equation: E = Eo + m (ln a) Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EaREe1-PfGNKq1Cbink6kkYB5lBy05hEaE3mbGPUb22S6w?rtime=zQaSX3xY3Ugarrow_forwarda) b) c) H NaOH heat, dehydration + KOH heat, dehydration NaOH + (CH3)3CCHO heat, dehydration Pharrow_forwardshow mechanismarrow_forward
- Please draw by handarrow_forward3. Predict the major product and give a mechanism for the following reactions: (CH3)3COH/H₂SO4 a) b) NC CH₂O c) LOCH, (CH3)3COH/H2SO4 H,SO -OHarrow_forwardIndicate if the aldehyde shown reacts with the provided nucleophiles in acid or base conditions. a NaBH4 be Li eli -NH2 P(Ph3) f KCN g OH excess h CH3OH i NaCHCCH3arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





