Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card
3rd Edition
ISBN: 9781305367388
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 9.37PAE

9.37 A calorimeter contained 75.0 g of water at 16.95°C. A 93.3-g sample of iron at 65.58°C was placed in it, giving a final temperature of 19.68°C for the system. Calculate the heat capacity of the calorimeter. Specific heats are 4 . 184J g 1 ° C 1 for H 2 O and 0.444 J g 1 ° C 1 for Fe.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

Using the information provided, the solutions can be obtained by calculations using suitable formulas.

Concept Introduction:

  • The specific heat is the amount of heat per unit mass required to raise the temperature by one degree Celsius. Formula for heat required is-

     Heat required,Q=c×m×ΔT

    Where

    c = specific heat of the substance

    m = mass of the substance

    ΔT = Temperature difference

  • According to the first law of thermodynamics,

    Qiron = Qcalorimetersystem

    Qcalorimetersystem= Qcalorimeter+Qwater

Answer to Problem 9.37PAE

Solution:

Heat capacity of calorimeter = 5.1025 J g-1 oC-1

Explanation of Solution

Given information:

Mass of water in the calorimeter = 75.0 g

Temperature of water in the calorimeter = 16.95 oC

Mass of sample of iron = 93.3 g

Temperature of sample of iron = 65.58 oC

Final temperature = 19.68 oC

Specific heat capacity of water = 4.184 J g -1 oC-1

Specific heat capacity of iron = 0.444 J g -1 oC-1

According to the thermodynamic equation is-

Qiron = Qcalorimetersystem

Qcalorimetersystem= Qcalorimeter+Qwater

Where

Qiron=Cp×ΔT×m

Cp= Specific heat capacity of iron

ΔT = Temperature difference

m = mass of the iron

Qcalorimeter system=Cp(calorimeter system)×ΔT×m(water)

Cp(water)= Specific heat capacity of water

Specific heat of water = 4.184 J g-1 oC-1

ΔT = Temperature difference

m(water) = mass of the titanium water

Therefore

Qiron =Qcalorimeter  systemQcalorimeter system= Qcalorimeter +QwaterCp×ΔT×m=Cp( calorimeter    system)×ΔT×m(water)0.444×(65.5819.68)×93.3=Cp( calorimeter    system) ×(19.6816.95)×75.0Cp( calorimeter    system)=0.444×(65.5819.68)×93.3(19.6816.95)×75.0Cp( calorimeter    system)=0.444×(45.9)×93.3(2.73)×75.0Cp( calorimeter    system)=1901.4166204.75=9.2865Qcalorimeter system= Qcalorimeter +Qwater9.2865= Qcalorimeter +4.184Qcalorimeter =9.28654.184=5.1025

Heat capacity of calorimeter = 5.1025 J g-1 oC-1

Conclusion

Heat capacity of calorimeter = 5.1025 J g-1 oC-1

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT
Please correct answer and don't used hand raiting

Chapter 9 Solutions

Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with QuickPrep 24-Months Printed Access Card

Ch. 9 - Prob. 9.3PAECh. 9 - Prob. 9.4PAECh. 9 - Prob. 9.5PAECh. 9 - Prob. 9.6PAECh. 9 - Define the term internal energy.Ch. 9 - How fast (in meters per second) must an iron ball...Ch. 9 - What is the kinetic energy of a single molecule of...Ch. 9 - 9.10 The kinetic energy of molecules is often used...Ch. 9 - 9.11 Analyze the units of the quantity...Ch. 9 - 9.12 How many kilojoules are equal to 3.27 L atm...Ch. 9 - Prob. 9.13PAECh. 9 - Prob. 9.14PAECh. 9 - 9.15 Carry out the following conversions of energy...Ch. 9 - 9.16 According to Figure 9.2, the total energy...Ch. 9 - 9.17 If a machine does 4.8103kJ of work after an...Ch. 9 - 9.18 Calculate (a) q when a system does 54J of...Ch. 9 - 9.19 If the algebraic sign of E is negative, in...Ch. 9 - 9.20 State the first law of thermodynamics briefly...Ch. 9 - 9.21 Which type of energy heat or work, is valued...Ch. 9 - 9.12 PV-work occurs when volume changes and...Ch. 9 - 9.23 Which system does not work: (a) E=436J ,...Ch. 9 - 9.29 In which case is heat added to the system:...Ch. 9 - Prob. 9.25PAECh. 9 - 9.26 Gas furnaces have achieved impressive...Ch. 9 - Prob. 9.27PAECh. 9 - 9.28 When an electrical appliance whose power...Ch. 9 - Prob. 9.29PAECh. 9 - 9.30 For the example of shallow water and sandy...Ch. 9 - 9.31 A metal radiator is made from 26.0 kg of...Ch. 9 - 9.32 The material typically used to heat metal...Ch. 9 - 9.33 Copper wires used to transport electrical...Ch. 9 - 9.34 A copper nail and an iron nail of the same...Ch. 9 - 9.35 A piece of titanium metal with a mass of 20.8...Ch. 9 - 9.36 Define the term calibration.Ch. 9 - 9.37 A calorimeter contained 75.0 g of water at...Ch. 9 - 9.38 The energy densities of various types of coal...Ch. 9 - 9.39 How much thermal energy is required to heat...Ch. 9 - Prob. 9.40PAECh. 9 - 9.41 Under what conditions does the enthalpy...Ch. 9 - 9.42 Why is enthalpy generally more useful than...Ch. 9 - Prob. 9.43PAECh. 9 - Prob. 9.44PAECh. 9 - 9.45 What happens to the temperature of a material...Ch. 9 - 9.46 The heat of fusion of pure silicon is 43.4...Ch. 9 - 9.47 If 14.8 kJ of heat is given off when 1.6 g of...Ch. 9 - 9.48 Calculate the energy required to convert 1.70...Ch. 9 - 9.49 Hvap=31.3 kJ/mol for acetone. If 1.40 kg of...Ch. 9 - 9.50 When a 13.0-g sample of NaOH(s) dissolves in...Ch. 9 - Prob. 9.51PAECh. 9 - 9.52 Write the formation reaction for each of the...Ch. 9 - Explain why each of the following chemical...Ch. 9 - Which of the following are state functions? (a)...Ch. 9 - 9.53 Using these reactions, find the standard...Ch. 9 - 9.54 The phase change between graphite and diamond...Ch. 9 - 9.55 Hydrogen gas will react with either acetylene...Ch. 9 - 9.56 Using heats of formation tabulated in...Ch. 9 - 9.57 The heat of combustion of butane is —2877...Ch. 9 - Prob. 9.60PAECh. 9 - When a reaction is exothermic, is the sum of bond...Ch. 9 - 9.58 For the reaction C2H2(g)+2H2(g)C2H6,H=136 kJ....Ch. 9 - 9.59 For the reaction N2(g)+O2(g)2NO(g),H=180.5kJ...Ch. 9 - 9.60 Nitroglycenne, C3H5(NO3)3( l ), is an...Ch. 9 - 9.61 Silane, SiH4, burns according to the...Ch. 9 - 9.62 Sulfur trioxide can be removed from the...Ch. 9 - 9.63 Reactions of hydrocarhons are often studied...Ch. 9 - Prob. 9.68PAECh. 9 - 9.65 When 0.0157 g of a compound with a heat of...Ch. 9 - Prob. 9.70PAECh. 9 - Prob. 9.71PAECh. 9 - 9.68 What are some features of petroleum that make...Ch. 9 - 9.69 How are the roles of transmission substations...Ch. 9 - 9.70 Residential electric service in the United...Ch. 9 - 9.71 In recent years, the notion of a “smart grid”...Ch. 9 - 9.72 Although it can be a nuisance when a laptop...Ch. 9 - 9.85 The figure below shows a "self-cooling"...Ch. 9 - 9.86 You make some iced tea by dropping 134 g of...Ch. 9 - A student performing a calorimetry experiment...Ch. 9 - The specific heat of gold is 0.13 J g-1K-1, and...Ch. 9 - 9.87 What will be the final temperature of a...Ch. 9 - Prob. 9.82PAECh. 9 - 9.89 A sample of gas is 80.0% CH4 and 20.0% C2H6...Ch. 9 - 9.90 Many engineering designs must incorporate...Ch. 9 - 9.91 You want to heat the air in your house with...Ch. 9 - Prob. 9.86PAECh. 9 - Prob. 9.87PAECh. 9 - Prob. 9.88PAECh. 9 - 9.95 How much heat is required to convert 250 g of...Ch. 9 - 9.96 Most first aid "cold packs" are based on the...Ch. 9 - 9.97 Suppose that the working fluid inside an...Ch. 9 - 9.98 Hydrogen combines with oxygen in fuel cells...Ch. 9 - 9.99 The chemical reaction...Ch. 9 - 9.100 Two baking sheets are made of different...Ch. 9 - Prob. 9.95PAECh. 9 - 9.102 A runner generates 418 kJ of energy per...Ch. 9 - 9.103 One reason why the energy density of a fuel...Ch. 9 - 9.104 An engineer is using sodium metal as a...Ch. 9 - Prob. 9.99PAECh. 9 - Prob. 9.100PAECh. 9 - Prob. 9.101PAECh. 9 - Prob. 9.102PAECh. 9 - Prob. 9.103PAECh. 9 - Prob. 9.104PAE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY