The wastewater treatment plant at the Ossabaw Paper Company paper mill generates about 24 tonnes of sludge per day. The consistency of the sludge is 35%, meaning that the sludge contains 35 wt% solids and the balance liquids. The mill currently spends $40/tonne to dispose of the sludge in a landfill. The plant environmental engineer has determined that if the sludge consistency could be increased to 75%, the sludge could be incinerated (burned) to generate useful energy and to eliminate the environmental problems associated with landfill disposal.
A flowchart for a preliminary design of the proposed sludge-treatment process follows. For simplicity, we will assume that the liquid in the sludge is just water.
Process description: The sludge from the wastewater treatment plant (Stream (A) passes through a dryer where a portion of the water in the sludge is vaporized. The heat required for the vaporization comes from condensing saturated steam at 4.00 bar (Stream (B)). The steam fed to the dryer is produced in the plant’s oil-fired boiler from feedwater at 20°C (Stream (C)). The heat required to produce the steam is transferred from the boiler furnace, where fuel oil (Stream (D)) is burned with 25% excess air (Stream (E)). The concentrated sludge coming from the dryer (Stream (F)), which has a consistency of 75%, is fed to an incinerator. The heating value of the sludge is insufficient to keep the incinerator temperature high enough for complete combustion, so natural gas (Stream (G)) is used as a supplementary fuel. A stream of outside air at 25°C (Stream (H)) is heated to 110°C and fed to the incinerator along with the concentrated sludge and natural gas. The waste gas from the incinerator is discharged to the atmosphere.
Fuel oil: The oil is a low-sulfur No. 6 fuel oil. Its ultimate (elemental) analysis on a weight basis is 87% C, 10% H, 0.84% S, and the balance oxygen, nitrogen, and nonvolatile ash. The higher heating value of the oil is 3.75 × 104kJ/kg and the heat capacity is Cp= 1.8 kJ/(kg·°C).
Boiler: The boiler has an efficiency of 62%, meaning that 62% of the heating value of the fuel oil burned is used to produce saturated steam at 4.00 bar from boiler feedwater at 20°C. Fuel oil at 65°C and dry air at 125°C are fed to the boiler furnace. The air feed rate is 25% in excess of the amount theoretically required for complete consumption of the fuel.
Sludge: The sludge from the wastewater treatment plant contains 35% w/w solids (S) and the balance liquids (which for the purposes of this problem may be treated as only water) and enters the dryer at 22°C. The sludge includes a number of volatile organic species, some of which may be toxic, and has a terrible odor. The heat capacity of the solids is approximately constant at 2.5 kJ/(kg·°C).
Dryer: The dryer has an efficiency of 55%, meaning that the heat transferred to the sludge, 02, is 55% of the total heat lost by the condensing steam, and the remainder,
Incinerator: The concentrated sludge has a heating value of 19,000 kJ/kg dry solids. For a feed sludge of 75% consistency, the incinerator requires 195 SCM natural gas/tonne wet sludge [ 1 SCM = 1 m3(STP)]. The theoretical air requirement for the sludge is 2.5 SCM air/10.000 kJ of heating value. Air is fed in 100% excess of the amount theoretically required to bum the sludge and the natural gas.
Use material and energy balances to calculate the mass flow rates (tonnes/day) of Streams (B), (C), (D), (E), (F), (G) and (H), and heat flows
- The money saved by implementing this process will be the current cost of disposing of the wastewater plant sludge in a landfill. Two major costs of implementing the process are the installed costs of the new dryer and incinerator. What other costs must be taken into account when determining the economic feasibility of the process? Why might management decide to go ahead with the project even if it proves to be unprofitable?
- What opportunities exist for improving the energy economy of the process? (Hint: Think about the need to preheat the fuel oil and the boiler and incinerator air streams and consider heat exchange possibilities.)
- The driving force for the introduction of this process is to eliminate the environmental cost of sludge disposal. What is that cost—that is, what environmental penalties and risks are associated with using landfills for hazardous waste disposal? What environmental problems might incineration introduce?
Learn your wayIncludes step-by-step video
Chapter 9 Solutions
Elementary Principles of Chemical Processes
Additional Engineering Textbook Solutions
Problem Solving with C++ (10th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Concepts Of Programming Languages
Management Information Systems: Managing The Digital Firm (16th Edition)
Database Concepts (8th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
- ۱۱۳ ۱۱۱۰ ۱۱۰ A + C Chegg Learn on the go = Chegg © chegg.com/homewo Open in app EN-US QUESTIONS AND PROBLEMS 4.1. With 100,000 BPD of the following crude (API = 36), estimate the products of the atmospheric distillation column. If the atmospheric residue of the crude is taken at 650+ F. It enters in a vacuum distilla- tion tower to give three products: light vacuum gas oil (650-850 °F), heavy vacuum gas oil (850-1050 °F) and vacuum residue (1050+ °F). Calculate the mass flow rate of these products. Then calculate the sulphur content (lb/hr) for each product. ASTM D86 (°F) vol% Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 3021 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 4821 8.0 31.41 0.8140 527 10,7 42.1 0.8250 584 5.0 47.1 0.8450 6361 10,0 57.1 0.8540 689 7,8 64.9 0.8630 7421 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310 Show transcribed image text Here's the best way to solve it. This problem…arrow_forwardQ1/obtain the transfer function for the block diagram shown in the figure below: G4 Garrow_forward(Population density parameters from sieve analysis data)2 One hundred fifty grams of crystals separated from one litre of suspension from an MSMPR crystallizer is subjected to screen analysis to get the following data: Tyler mesh Mass(g) 12/14 28.5 14/20 29.2 20/28 28/35 35/48 below 48 mesh 37.5 27 24.7 3.1 Mesh no./ screen opening(um) data: 12/1410 μm; 14/1190; 20/841; 28/595; 35/420; 48/297. The working volume of the crystallizer is 200 litres, and the rate of withdrawal of the slurry is 250 litre per hour. Given pc = 1400 kg/m³ and volume shape factor o, = 0.42, determine the crystal growth rate and the zero-size population density of the crystals. What is the rate of nucleation, Bº?arrow_forward
- need help with this phase transformations practise questionarrow_forwardhelp with this practise question on phase transformations.arrow_forwardDifferentiate between an ideal and a regular solution consisting of a mixture of A and B atoms. Which of these solutions, is likely to contain a random mixture of atoms at all temperatures? For the binary A-B ideal-solution, differentiate the equation for the configurational entropy of mixing with respect to concentration. Hence show that the slope of the free energy of mixing versus concentration curve is towards tinfinity when the mole fraction is 0 or 1. Does this make it easy or hard to purify materials? [50%] (ii) How can a phase that has a limited solubility for a particular solute be forced to accept larger concentrations which far exceed its equilibrium solubility? [20%] (iii) Atoms of A and B are arranged in a straight line at random, with the mole fraction of B equal to x. What is the probability of finding two A atoms next to each other? How would your calculation be modified if this were to be a two-dimensional array of A and B atoms? [20%] (iv) An alloy is to be made,…arrow_forward
- Can the method steps be given for these questions please 10 answer given is 0.01m/s 11 answer given is 0.067e Cnm where e is charge of electron divided by volume of unit cell, giving 0.165 C/m^2 12 answer is 0.08%arrow_forward3. Differentiate f(x) = x² sin(x). 4. Evaluate the limit: lim x 0 sin(2x) Xarrow_forwardDifferentiate between an ideal and a regular solution consisting of a mixture of A andB atoms. Which of these solutions, is likely to contain a random mixture of atomsat all temperatures? For the binary A-B ideal-solution, differentiate the equationfor the configurational entropy of mixing with respect to concentration. Hence showthat the slope of the free energy of mixing versus concentration curve is towards±infinity when the mole fraction is 0 or 1. Does this make it easy or hard to purifymaterials?arrow_forward
- Question During the solidification of a binary alloy, with a positive temperature gradient in the melt, a planar solid-liquid interface is moving at the steady state, Fig. Q1(i). The variation of the solute concentration, C, in the melt ahead of the interface is given by, b) If m is the liquidus gradient, or the slope of liquidus, Fig.Q1 (iv), how does the equilibrium temperature, T, vary with the melt composition C? T₁ = C=C1+ exp R.x D (equation 1.1) T L Solid Melt (iv) T₁ S S+L where Co is the nominal solute concentration in the alloy, Ko is the equilibrium distribution coefficient, R is the solid-liquid interface moving rate, D is the solute diffusivity in the melt and x is distance into the liquid phase, Fig. Q1(ii). Answer the questions in the steps below, to show that the level of constitutional supercooling is governed by both the actual temperature, T, and the composition, C, in the solidification front. a) Consider a point in the melt at a distance x away from the solid/melt…arrow_forwardPractise question of phase transformations topic that I need help on thank you.arrow_forwardPractise question:arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The