Concept explainers
Ethyl alcohol (ethanol) can be produced by the fermentation of sugars derived from agricultural products such as sugarcane and com. Some countries without large petroleum and natural gas reserves—such as Brazil—have found it profitable to convert a portion of their agricultural output to ethanol for fuel or for use as a feedstock in the synthesis of other chemicals.
In one such process, a portion of the starch in com is converted to ethanol in two consecutive reactions. In a saccharification reaction, starch decomposes in the presence of certain enzymes (biological catalysts) to form an aqueous mash containing maltose (C12H22O11, a sugar) and several other decomposition products. The mash is cooled and combined with additional water and a yeast culture in a batch fermentation tank (fermentor). In the fermentation reaction (actually a complex series of reactions), the yeast culture grows and in the process converts maltose to ethanol and carbon dioxide:
The fermentor is a 550,000 gallon tank filled to 90% of its capacity with a suspension of mash and yeast in water. The mass of the yeast is negligible compared to the total mass of the tank contents. Thermal energy is released by the exothermic conversion of maltose to ethanol. In an adiabatic operating stage, the temperature of the tank contents increases from an initial value of 85°F to 95°F. and in a second stage the temperature is kept at 95°F by a reactor cooling system. The final reaction mixture contains carbon dioxide dissolved in a slurry containing 7.1 wt% ethanol, 6.9 wt% soluble and suspended solids, and the balance water. The mixture is pumped to a flash evaporator in w hich CO2is vaporized, and the ethanol product is then separated from the remaining mixture components in a series of distillation and stripping operations. Data
• One bushel (56 Ibm) of com yields 25 gallons of mash fed to the fermentor, which in turn yields 2.6 gallons of ethanol. Roughly 101 bushels of com is harvested from an acre of land.
- A batch fermentation cycle (charging the fermentation tank, running the reaction, discharging the tank, and preparing the tank to receive the next load) takes eight hours. The process operates 24 hours per day, 330 days per year.
- The specific gravity of the fermentation reaction mixture is approximately constant at 1.05. The average heat capacity of the mixture is 0.95 Btu/(Ibm·°F). The standard heat of combustion of maltose to form CO 2(g) and
Calculate the standard heat of the maltose conversion reaction,
Learn your wayIncludes step-by-step video
Chapter 9 Solutions
Elementary Principles of Chemical Processes
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Modern Database Management
Electric Circuits. (11th Edition)
Database Concepts (8th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Mechanics of Materials (10th Edition)
- 3.3. Use the following crude assay data with crude API of 36 to estimate cut vol%, critical properties and molecular weight for Light Naphtha (90- 190 °F) and Kerosene (380-520 °F). In addition, calculate the fractions of paraffins, naphthenes and aromatics in the two cuts. ASTM D86 (°F) Volume % Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 302 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 482 8.0 31.4 0.8140 527 10.7 42.1 0.8250 584 5.0 47.1 0.8450 636 10.0 57.1 0.8540 689 7.8 64.9 0.8630 742 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20 8 002 09310 Iarrow_forwardProblem 1) A fractional factorial design has been used to study on the effect of 3 parameters including adsorbent concentration (300 and 500 ppm), pH value (4 and 10) and reaction time (6 and 12 hours) on the adsorption capacity of a composite for removing of methylene blue from a wastewater. If the results obtained for two repetitions of the tests are according to the following table, it is desirable: A) Design Resolution Y₁ Y₂ Run (mg/g) (mg/g) B) Drawing graphs of the effect of each parameter on the adsorption capacity 1 28 26 2 36 34 C) Analysis of interactions 3 18 20 D) Calculate the effects percentage of each parameter and error 4 32 30 E) Determining the optimum conditions to achieve the highest adsorption capacityarrow_forwardThermophysical Properties of Petroleum Fractions and Crude Ofls 67 3.4. A gas oil has the following TBP distillation data Volume % TBP (°C) 0 216 10 243 30 268 50 284 70 304 90 318 95 327 100 334 It also has an average boiling point of 280 °C and an average density of 0.850 g/cm³. (a) Split this gas oil fraction into five pseudo-components. Calculate T., Pc and w for each pseudo-component. (b) Calculate T, Pc and w for the whole gas oil fraction. (c) Calculate the enthalpy of this gas oil fraction at 400 °C using the Lee- Kessler correlation with a reference state of ideal gas at 273.15 K.arrow_forward
- 3.3. Use the following crude assay data with crude API of 36 to estimate cut vol%, critical properties and molecular weight for Light Naphtha (90- 190 °F) and Kerosene (380-520 °F). In addition, calculate the fractions of paraffins, naphthenes and aromatics in the two cuts. ASTM D86 (°F) Volume % Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 302 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 482 8.0 31.4 0.8140 527 10.7 42.1 0.8250 584 5.0 47.1 0.8450 636 10.0 57.1 0.8540 689 7.8 64.9 0.8630 742 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310arrow_forward۱۱۳ ۱۱۱۰ ۱۱۰ A + C Chegg Learn on the go = Chegg © chegg.com/homewo Open in app EN-US QUESTIONS AND PROBLEMS 4.1. With 100,000 BPD of the following crude (API = 36), estimate the products of the atmospheric distillation column. If the atmospheric residue of the crude is taken at 650+ F. It enters in a vacuum distilla- tion tower to give three products: light vacuum gas oil (650-850 °F), heavy vacuum gas oil (850-1050 °F) and vacuum residue (1050+ °F). Calculate the mass flow rate of these products. Then calculate the sulphur content (lb/hr) for each product. ASTM D86 (°F) vol% Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 3021 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 4821 8.0 31.41 0.8140 527 10,7 42.1 0.8250 584 5.0 47.1 0.8450 6361 10,0 57.1 0.8540 689 7,8 64.9 0.8630 7421 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310 Show transcribed image text Here's the best way to solve it. This problem…arrow_forwardQ1/obtain the transfer function for the block diagram shown in the figure below: G4 Garrow_forward
- (Population density parameters from sieve analysis data)2 One hundred fifty grams of crystals separated from one litre of suspension from an MSMPR crystallizer is subjected to screen analysis to get the following data: Tyler mesh Mass(g) 12/14 28.5 14/20 29.2 20/28 28/35 35/48 below 48 mesh 37.5 27 24.7 3.1 Mesh no./ screen opening(um) data: 12/1410 μm; 14/1190; 20/841; 28/595; 35/420; 48/297. The working volume of the crystallizer is 200 litres, and the rate of withdrawal of the slurry is 250 litre per hour. Given pc = 1400 kg/m³ and volume shape factor o, = 0.42, determine the crystal growth rate and the zero-size population density of the crystals. What is the rate of nucleation, Bº?arrow_forwardneed help with this phase transformations practise questionarrow_forwardhelp with this practise question on phase transformations.arrow_forward
- Differentiate between an ideal and a regular solution consisting of a mixture of A and B atoms. Which of these solutions, is likely to contain a random mixture of atoms at all temperatures? For the binary A-B ideal-solution, differentiate the equation for the configurational entropy of mixing with respect to concentration. Hence show that the slope of the free energy of mixing versus concentration curve is towards tinfinity when the mole fraction is 0 or 1. Does this make it easy or hard to purify materials? [50%] (ii) How can a phase that has a limited solubility for a particular solute be forced to accept larger concentrations which far exceed its equilibrium solubility? [20%] (iii) Atoms of A and B are arranged in a straight line at random, with the mole fraction of B equal to x. What is the probability of finding two A atoms next to each other? How would your calculation be modified if this were to be a two-dimensional array of A and B atoms? [20%] (iv) An alloy is to be made,…arrow_forwardCan the method steps be given for these questions please 10 answer given is 0.01m/s 11 answer given is 0.067e Cnm where e is charge of electron divided by volume of unit cell, giving 0.165 C/m^2 12 answer is 0.08%arrow_forward3. Differentiate f(x) = x² sin(x). 4. Evaluate the limit: lim x 0 sin(2x) Xarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The