Formaldehyde is produced commercially by the catalytic oxidation of methanol. In a side reaction, methanol is oxidized to CO2.
A mixture containing 55.6 mole% methanol and the balance oxygen enters a reactor at 350°C and 1 atm at a rate of 4.60 × 104L/s. The reaction products emerge at the same temperature and pressure at a rate of 6.26 × 104L/s. An analysis of the products yields a molar composition of 36.7% CH2O,4.1% CO2, 14.3% O2. and 44.9% H2O. The required reactor cooling rate is calculated to be 1.05 × 105kW.
- Is the calculated cooling rate correct for the given stream data?
- The stream data cannot be correct. Prove it.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Elementary Principles of Chemical Processes
Additional Engineering Textbook Solutions
Elements of Chemical Reaction Engineering (5th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
Process Dynamics and Control, 4e
Java How To Program (Early Objects)
Starting Out with Java: From Control Structures through Objects (6th Edition)
Starting Out with Programming Logic and Design (4th Edition)
Problem Solving with C++ (9th Edition)
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The