Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.58E
Interpretation Introduction
Interpretation:
The Planck’s law of infinitesimal power flux (equation 9.23) versus wavelength is to be plotted at various temperatures. The Planck’s law is to be integrated to get the Stefan-Boltzmann law and the constant.
Concept introduction:
Planck’s equation can also be represented in the form of power flux or infinitesimal power per unit area for a black body radiation at a given temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Give the answer asap!
None
11. (
Draw the potential energy as a function of x. On top of the potential function, draw horizontal
lines corresponding to the ground and first two excited quantum mechanical state energies of
this system. Label the lines with their respective "v labels". Finally, using your energy state
lines as individual axis, draw the wave functions for the ground and first two excited states.
Consider the standard one-dimensional Harmonic oscillator centered about x = 0.
Chapter 9 Solutions
Physical Chemistry
Ch. 9 - For an object having mass m falling in the z...Ch. 9 - For the system in exercise 9.1, determine the...Ch. 9 - Prob. 9.3ECh. 9 - Prob. 9.4ECh. 9 - Prob. 9.5ECh. 9 - List some unexplainable phenomena from the...Ch. 9 - Draw, label, and explain the functions of the...Ch. 9 - Convert a a wavelength of 218A to cm1, b a...Ch. 9 - Prob. 9.9ECh. 9 - Prob. 9.10E
Ch. 9 - Explain why no lines in the Balmer series of the...Ch. 9 - What are the series limits see the previous...Ch. 9 - The following are the numbers n2 for some of the...Ch. 9 - The Balmer series is isolated from the other...Ch. 9 - Given that the wavelengths of the first three...Ch. 9 - Some scientists study Rydberg atoms, atoms whose...Ch. 9 - Prob. 9.17ECh. 9 - Prob. 9.18ECh. 9 - a How much radiant energy is given off, in...Ch. 9 - Stefans law, equation 9.18, suggests that any body...Ch. 9 - Prob. 9.21ECh. 9 - Betelgeuse pronounced beetle juice is a reddish...Ch. 9 - An average human body has a surface area of...Ch. 9 - Prob. 9.24ECh. 9 - The slope of the plot of energy versus wavelength...Ch. 9 - a Use Wien displacement law to determine the max...Ch. 9 - Prob. 9.27ECh. 9 - Sunburn is caused by ultraviolet UV radiation. Why...Ch. 9 - Calculate the energy of photon having: a a...Ch. 9 - Prob. 9.30ECh. 9 - Integrate Plancks law equation 9.23 from the...Ch. 9 - Calculate the power of light in the wavelength...Ch. 9 - Prob. 9.33ECh. 9 - Work functions are typically given in units of...Ch. 9 - Determine the speed of an electron being emitted...Ch. 9 - Lithium has a work function of 2.90eV. Light...Ch. 9 - Prob. 9.37ECh. 9 - Assume that an electron can absorb more than one...Ch. 9 - The photoelectric effect is used today to make...Ch. 9 - Prob. 9.40ECh. 9 - Prob. 9.41ECh. 9 - Prob. 9.42ECh. 9 - Prob. 9.43ECh. 9 - Prob. 9.44ECh. 9 - Use equation 9.34 to determine the radii, in...Ch. 9 - Prob. 9.46ECh. 9 - Calculate the energies of an electron in the...Ch. 9 - Prob. 9.48ECh. 9 - Show that the collection of constants given in...Ch. 9 - Prob. 9.50ECh. 9 - Equations 9.33 and 9.34 can be combined and...Ch. 9 - a Compare equations 9.31, 9.34, and 9.41 and...Ch. 9 - Label each of the properties of an electron as a...Ch. 9 - The de Broglie equation for a particle can be...Ch. 9 - What is the wavelength of a baseball having mass...Ch. 9 - Electron microscopes operate on the fact that...Ch. 9 - Prob. 9.57ECh. 9 - Prob. 9.58ECh. 9 - Determine under what conditions of temperature and...Ch. 9 - Prob. 9.60ECh. 9 - Prob. 9.61E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Show that the collection of constants given in equation 9.40 gives the correct numerical value of the Rydberg constant.arrow_forwardThe normalized wave function for a particle in a one-dimensional box in which the potential energy is zero is (x)=2/Lsin(nx/L) , where L is the length of the box (with the left wall at x=0 ). What is the probability that the particle will lie between x=0 and x=L/4 if the particle is in its n=2 state?arrow_forwardA particle on a ring has a wavefunction =12eim where equals 0 to 2 and m is a constant. Evaluate the angular momentum p of the particle if p=i How does the angular momentum depend on the constant m?arrow_forward
- In exercise 11.57 regarding C60, what are the numerical values of the total angular momenta of the electron for each state having quantum number l? What are the z components of the angular momentum for each state?arrow_forwardUsing the original definition of the momentum operator and the classical form of kinetic energy, derive the one-dimensional kinetic energy operator K=22m2x2arrow_forwardIntegrate Plancks law equation 9.23 from the wavelength limits =0 to = to get equation 9.24. You will have to rewrite the expression by redefining the variable and its infinitesimal and use the following integral: 0(x3ex1)dx=4159.43arrow_forward
- For a particle in a state having the wavefunction =2asinxa in the range x=0toa, what is the probability that the particle exists in the following intervals? a x=0to0.02ab x=0.24ato0.26a c x=0.49ato0.51ad x=0.74ato0.76a e x=0.98ato1.00a Plot the probabilities versus x. What does your plot illustrate about the probability?arrow_forwardConsider Figure 11.4 and choose the correct phrase: As the vibrational quantum number increases, the extension of the vibration increases/decreases/stays the same while the average length of the oscillator itself increases/decreases/stays the same. Explain your choices.arrow_forwardA particle on a ring has a wavefunction =eim, where =0to2 and m is a constant. a Normalize the wavefunction, where d is d. How does the normalization constant depend on the constant m? b What is the probability that the particle is in the ring indicated by the angular range =0to2/3? Does this answer make sense? How does the probability depend on constant m?arrow_forward
- What is the physical explanation of the difference between a particle having the 3-D rotational wavefunction 3,2 and an identical particle having the wavefunction 3,2?arrow_forwardAn electron in a hydrogen atom falling from an excited state n=7 to a relaxed state has the same wavelength as an electron moving at a speed of 7821 m/s. Determine the relaxed orbit that this has electron relaxed to. Do NOT USE RYDBERGS EQUATIONarrow_forwardPlease provide botharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning