Concept explainers
(a)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(b)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(c)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(d)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(e)
Interpretation:
The results are to be compared with those of exercise
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
The slope of the plot of energy versus wavelength for the Rayleigh-Jeans law is given by a rearrangement of equation
Answer to Problem 9.30E
The values of slope of the plot of energy versus wavelength from Rayleigh-Jeans law is similar to that of Planck’s radiation distribution law at temperature and wavelength
Explanation of Solution
On comparing the results from exercise
The values of slope of the plot of energy versus wavelength from Rayleigh-Jeans law is similar to that of Planck’s radiation distribution law at temperature and wavelength
(f)
Interpretation:
The temperatures and spectral regions at which the Rayleigh-Jeans law is close to Planck’s law are to be identified.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
The slope of the plot of energy versus wavelength for the Rayleigh-Jeans law is given by,
Answer to Problem 9.30E
At higher temperatures and longer wavelengths, the Rayleigh-Jeans law is close to Planck’s law.
Explanation of Solution
On comparing the results from exercise
At higher temperatures and longer wavelengths the Rayleigh-Jeans law is close to Planck’s law.
Want to see more full solutions like this?
Chapter 9 Solutions
Physical Chemistry
- AN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forward
- Q3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forward
- Please correct answer and don't used hand raitingarrow_forward9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forwardPlease Don't used hand raitingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning