![International Edition---engineering Mechanics: Statics, 4th Edition](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_largeCoverImage.gif)
International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN: 9781305501607
Author: Andrew Pytel And Jaan Kiusalaas
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 9.39P
For the region shown,
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
on-the-job conditions.
9 ±0.2-
0.5
M
Application questions 1-7 refer to the drawing above.
1. What does the flatness tolerance labeled "G" apply to?
Surface F
A.
B.
Surfaces E and F
C. Surfaces D, E, H, and I
D.
The derived median plane of 12 +0.2
0.5
0.5
CF) 20 ±0.2
0.1
7.
O
12 ±0.2-
H
0.3
ASME Y14.5-2009
elements, each with a length of 1 m. Determine the temperature on
node 1, 2, 3, 4.
3. Solve the strong form analytically (you may choose Maple, MATLAB
or Mathematica to help you solve this ODE). Compare the FE
approximate temperature distribution through the block against the
analytical solution.
1
(1)
200 °C
2
(2)
3 m
3
(3)
Compute the horizontal and vertical components of the
reaction at the pin A.
B
A
30°
0.75 m
1 m
60 N
0.5 m
90 N-m
Chapter 9 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
Ch. 9 - Compute the moment of inertia of the shaded region...Ch. 9 - The properties of the plane region are...Ch. 9 - The moments of inertia of the plane region about...Ch. 9 - The moment of inertia of the plane region about...Ch. 9 - Using integration, find the moment of inertia and...Ch. 9 - Use integration to determine the moment of inertia...Ch. 9 - Determine Ix and Iy for the plane region using...Ch. 9 - Using integration, compute the polar moment of...Ch. 9 - Use integration to compute Ix and Iy for the...Ch. 9 - By integration, determine the moments of inertia...
Ch. 9 - Compute the moment of inertia about the x-axis for...Ch. 9 - By integration, find the moment of inertia about...Ch. 9 - Figure (a) shows the cross section of a column...Ch. 9 - Compute the dimensions of the rectangle shown in...Ch. 9 - Compute Ix and Iy for the W867 shape dimensioned...Ch. 9 - Figure (a) shows the cross-sectional dimensions...Ch. 9 - A W867 section is joined to a C1020 section to...Ch. 9 - Compute Ix and Iy for the region shown.Ch. 9 - Prob. 9.19PCh. 9 - Calculate Ix for the shaded region, knowing that...Ch. 9 - Compute Iy for the region shown, given that...Ch. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Determine Ix for the triangular region shown.Ch. 9 - Determine the distance h for which the moment of...Ch. 9 - A circular region of radius R/2 is cut out from...Ch. 9 - Prob. 9.27PCh. 9 - Determine the ratio a/b for which Ix=Iy for the...Ch. 9 - As a round log passes through a sawmill, two slabs...Ch. 9 - Prob. 9.30PCh. 9 - By numerical integration, compute the moments of...Ch. 9 - Use numerical integration to compute the moments...Ch. 9 - The plane region A is submerged in a fluid of...Ch. 9 - Use integration to verify the formula given in...Ch. 9 - For the quarter circle in Table 9.2, verify the...Ch. 9 - Determine the product of inertia with respect to...Ch. 9 - The product of inertia of triangle (a) with...Ch. 9 - Prob. 9.38PCh. 9 - For the region shown, Ixy=320103mm4 and Iuv=0....Ch. 9 - Prob. 9.40PCh. 9 - Calculate the product of inertia with respect to...Ch. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - The figure shows the cross section of a standard...Ch. 9 - Prob. 9.45PCh. 9 - Prob. 9.46PCh. 9 - Prob. 9.47PCh. 9 - Use numerical integration to compute the product...Ch. 9 - Determine the dimension b of the square cutout so...Ch. 9 - For the rectangular region, determine (a) the...Ch. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - The u- and v-axes are the principal axes of the...Ch. 9 - The x- and y-axes are the principal axes for the...Ch. 9 - Prob. 9.58PCh. 9 - The inertial properties of the region shown with...Ch. 9 - Determine Iu for the inverted T-section shown....Ch. 9 - Using Ix and Iu from Table 9.2, determine the...Ch. 9 - Show that every axis passing through the centroid...Ch. 9 - Prob. 9.63PCh. 9 - The L806010-mm structural angle has the following...Ch. 9 - Compute the principal centroidal moments of...Ch. 9 - Prob. 9.66PCh. 9 - Determine the principal axes and the principal...Ch. 9 - Compute the principal centroidal moments of...Ch. 9 - Find the moments and the product of inertia of the...Ch. 9 - Determine the moments and product of inertia of...Ch. 9 - Find the principal moments of inertia and the...Ch. 9 - Determine the moments and product of inertia of...Ch. 9 - Prob. 9.73PCh. 9 - Prob. 9.74PCh. 9 - The u- and v-axes are the principal axes of the...Ch. 9 - The x- and y-axes are the principal axes for the...Ch. 9 - Prob. 9.77PCh. 9 - The L806010-mm structural angle has the following...Ch. 9 - Prob. 9.79RPCh. 9 - Prob. 9.80RPCh. 9 - By integration, show that the product of inertia...Ch. 9 - Compute Ix and Iy for the shaded region.Ch. 9 - Using integration, evaluate the moments of inertia...Ch. 9 - The inertial properties at point 0 for a plane...Ch. 9 - Compute Ix and Iy for the shaded region.Ch. 9 - The flanged bolt coupling is fabricated by...Ch. 9 - Prob. 9.87RPCh. 9 - Compute Ix,Iy, and Ixy for the shaded region.Ch. 9 - Determine Ix and Ixy for the shaded region shown.Ch. 9 - Calculate Ix,Iy, and Ixy for the shaded region...Ch. 9 - For the shaded region shown, determine (a) Ix and...Ch. 9 - Use integration to find Ix,Iy, and Ixy for the...Ch. 9 - Determine the principal moments of inertia and the...Ch. 9 - The properties of the unequal angle section are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A particle is held and then let go at the edge of a circular shaped hill of radius R = shown below. The angular motion of the particle is governed by the following ODE: + 0.4 02 - 2 cos 0 + 0.8 sin 0 = 0 where is the angle in rad measured from the top (CCW: +), ė 5m, as = wis the velocity in rad/s, ==a is the angular acceleration in rad/s². Use MATLAB to numerically integrate the second order ODE and predict the motion of the particle. (a) Plot and w vs. time (b) How long does it take for the particle to fall off the ring at the bottom? (c) What is the particle speed at the bottom. Hint v = Rw. in de all questions the particles inside the tube. /2/07/25 Particle R 0 0 R eled witharrow_forwardIf FA = 40 KN and FB = 35 kN, determine the magnitude of the resultant force and specify the location of its point of application (x, y) on the slab. 30 kN 0.75 m 90 kN FB 2.5 m 20 kN 2.5 m 0.75 m FA 0.75 m 3 m 3 m 0.75 marrow_forwardThe elastic bar from Problem 1 spins with angular velocity ω about an axis, as shown in the figure below. The radial acceleration at a generic point x along the bar is a(x) = ω 2 x. Under this radial acceleration, the bar stretches along x with displacement function u(x). The displacement u(x) is governed by the following equations: ( d dx (σ(x)) + ρa(x) = 0 PDE σ(x) = E du dx Hooke’s law (2) where σ(x) is the axial stress in the rod, ρ is the mass density, and E is the (constant) Young’s modulus. The bar is pinned on the rotation axis at x = 0 and it is also pinned at x = L. Determine:1. Appropriate BCs for this physical problem.2. The displacement function u(x).3. The stress function σ(x).arrow_forward
- The heated rod from Problem 3 is subject to a volumetric heatingh(x) = h0xLin units of [Wm−3], as shown in the figure below. Under theheat supply the temperature of the rod changes along x with thetemperature function T(x). The temperature T(x) is governed by thefollowing equations:(−ddx (q(x)) + h(x) = 0 PDEq(x) = −kdTdx Fourier’s law of heat conduction(4)where q(x) is the heat flux through the rod and k is the (constant)thermal conductivity. Both ends of the bar are in contact with a heatreservoir at zero temperature. Determine:1. Appropriate BCs for this physical problem.2. The temperature function T(x).3. The heat flux function q(x).arrow_forwardA heated rod of length L is subject to a volumetric heating h(x) = h0xLinunits of [Wm−3], as shown in the figure below. Under the heat supply thetemperature of the rod changes along x with the temperature functionT(x). The temperature T(x) is governed by the following equations:(−ddx (q(x)) + h(x) = 0 PDEq(x) = −kdTdx Fourier’s law of heat conduction(3)where q(x) is the heat flux through the rod and k is the (constant)thermal conductivity. The left end of the bar is in contact with a heatreservoir at zero temperature, while the right end of the bar is thermallyinsulated. Determine:1. Appropriate BCs for this physical problem.2. The temperature function T(x).3. The heat flux function q(x).arrow_forwardCalculate the mean piston speed (in mph) for a Formula 1 engine running at 14,750 rpm with a bore of 80mm and a stroke of 53mm. Estimate the average acceleration imparted on the piston as it moves from TDC to 90 degrees ATDCarrow_forward
- Calculate the compression ratio of an engine with a stroke of 4.2inches a bore of 4.5 inches and a clearance volume of 6.15 cubic inches. Discuss whether or not this is a realistic compression ratio for a street engine and what octane rating of fuel it would need to run correctlyarrow_forwardDraw the free-body diagram for the pinned assembly shown. Find the magnitude of the forces acting on each member of the assembly. 1500 N 1500 N C 45° 45° 45° 45° 1000 mmarrow_forwardAn elastic bar of length L spins with angular velocity ω about an axis, as shown in the figure below. The radial acceleration at a generic point x along the bar is a(x) = ω 2 x. Due to this radial acceleration, the bar stretches along x with displacement function u(x). The displacement u(x) is governed by the following equations: ( d dx (σ(x)) + ρa(x) = 0 PDE σ(x) = E du dx Hooke’s law (1) where σ(x) is the axial stress in the rod, ρ is the mass density, and E is the (constant) Young’s modulus. The bar is pinned on the rotation axis at x = 0, and it is free at x = L. Determine:1. Appropriate BCs for this physical problem.2. The displacement function u(x).3. The stress function σ(x).arrow_forward
- With reference to the given figure: a) Draw a free-body diagram of the structure supporting the pulley. b) Draw shear and bending moment diagrams for both the vertical and horizontal portions of the structure. 48 in. 100 lb 12 in. Cable 27 in. 12-in. pulley radius 100 lb Cablearrow_forwardConsider a standard piston engine . Draw a free body diagram of the piston. Then:a) For an A SI engine with a 100 mm bore at an instantaneous cylinder pressure of 42 bar i. Calculate the level of the combustion gas loading force on the wrist pin in kN. b) Repeat this calculationfor a forced-induction Diesel engine with a 145 mm boreat a cylinder pressure of 115 bararrow_forwardA punch press with flywheel adequate to minimize speed fluctuation produces 120 punching strokes per minute, each providing an average force of 2000 N over a stroke of 50 mm. The press is driven through a gear reducer by a shaft rotating 200 rpm. Overall efficiency is 80%. a) What power (W) is transmitted through the shaft? b) What average torque is applied to the shaft?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305501607/9781305501607_smallCoverImage.gif)
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License