(a) Interpretation: The free energy change for the conversion of liquid water to water vapor at 100&degC needs to be determined. Concept introduction: The Gibb’s equation of thermodynamic purposed a relation between ΔS , ΔH and ΔG with Temperature. The mathematical expression of Gibb’s equation can be written as: ΔG = ΔH - TΔS With the help of this equation one can predict the change in ΔS , ΔH and ΔG . For any reaction the ΔH can be calculated with the help of the following relation: ΔrH°= ΣΔrH°product - ∑ ΔrH°reactant
(a) Interpretation: The free energy change for the conversion of liquid water to water vapor at 100&degC needs to be determined. Concept introduction: The Gibb’s equation of thermodynamic purposed a relation between ΔS , ΔH and ΔG with Temperature. The mathematical expression of Gibb’s equation can be written as: ΔG = ΔH - TΔS With the help of this equation one can predict the change in ΔS , ΔH and ΔG . For any reaction the ΔH can be calculated with the help of the following relation: ΔrH°= ΣΔrH°product - ∑ ΔrH°reactant
Solution Summary: The author explains Gibb's equation of thermodynamic purposed a relation between S,
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 9, Problem 9.128SP
Interpretation Introduction
(a)
Interpretation:
The free energy change for the conversion of liquid water to water vapor at 100°C needs to be determined.
Concept introduction:
The Gibb’s equation of thermodynamic purposed a relation between ΔS, ΔH and ΔG with Temperature. The mathematical expression of Gibb’s equation can be written as:
ΔG = ΔH - TΔS
With the help of this equation one can predict the change in ΔS, ΔH and ΔG. For any reaction the ΔH can be calculated with the help of the following relation:
ΔrH°= ΣΔrH°product - ∑ΔrH°reactant
Interpretation Introduction
(b)
Interpretation:
The free energy change for the freezing of liquid water to the ice at 0°C needs to be determined.
Concept introduction:
The Gibb’s equation of thermodynamic purposed a relation between ΔS, ΔH and ΔG with temperature. The mathematical expression of Gibb’s equation can be written as:
ΔG = ΔH - TΔS
With the help of this equation one can predict the change in ΔS, ΔH and ΔG. For any reaction, the ΔH can be calculated with the help of the following relation:
ΔrH°= ΣΔrH°product - ∑ΔrH°reactant
Interpretation Introduction
(c)
Interpretation:
The free energy change for the erosion of a mountain from the glacier needs to be determined.
Concept introduction:
The Gibb’s equation of thermodynamic purposed a relation between ΔS, ΔH and ΔG with Temperature. The mathematical expression of Gibb’s equation can be written as:
ΔG = ΔH - TΔS
With the help of this equation one can predict the change in ΔS, ΔH and ΔG. For any reaction, the ΔH can be calculated with the help of the following relation:
Name the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution
10+
Now the product. The product has a molecular formula f
b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with
comply
Draw the major organic structure inhalation
Macmillan Learning
Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3),
commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by
PCC when carried out in an anhydrous solvent such as CH₂C₁₂.
PCC
Intermediate
OH
CH2Cl2
Draw the intermediate.
Select Draw Templates More
с H Cr
о
Product
Draw the product.
Erase
Select Draw Templates More
H
о
Erase
If I have 1-bromopropene, to obtain compound
A, I have to add NaOH and another compound.
Indicate which compound that would be.
A
C6H5 CH3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY