Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.11P
A supersonic flow at
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area of 2 m2 and a test-section cross-sectional area of 0.5 m2. The pressure in the test section is 1 atm.
An airplane is flying at a standard altitude of 10,000 ft. A Pitot tube mounted at the nose measures a pressure of 2220 lb/ft2. The airplane is flying at a high subsonic speed, faster than 300 mph. The flow should be considered compressible. Calculate the velocity of the airplane.
58. Find the height of a supersonic airplane (v =
670 m-s1, T = - 44 C°) when the time between
seeing above observer and hearing is 8.8 sec.
Chapter 9 Solutions
Fundamentals of Aerodynamics
Ch. 9 - A slender missile is flying at Mach 1.5 at low...Ch. 9 - Consider an oblique shock wave with a wave angle...Ch. 9 - Equation (8.80) does not hold for an oblique shock...Ch. 9 - Consider an oblique shock wave with a wave angle...Ch. 9 - Consider the flow over a 22.2 half-angle wedge. If...Ch. 9 - Consider a flat plate at an angle of attack a to a...Ch. 9 - A 30.2 half-angle wedge is inserted into a...Ch. 9 - Consider a Mach 4 airflow at a pressure of 1 atm....Ch. 9 - Consider an oblique shock generated at a...Ch. 9 - Consider the supersonic flow over an expansion...
Ch. 9 - A supersonic flow at M1=1.58 and p1=1atm expands...Ch. 9 - A supersonic flow at M1=3,T1=285K, and p1=1atm is...Ch. 9 - Consider an infinitely thin flat plate at an angle...Ch. 9 - Consider a diamond-wedge airfoil such as shown in...Ch. 9 - Consider sonic flow. Calculate the maximum...Ch. 9 - Consider a circular cylinder (oriented with its...Ch. 9 - Consider the supersonic flow over a flat plate at...Ch. 9 - (The purpose of this problem is to calculate a...Ch. 9 - Repeat Problem 9.18, except with =30. Again, we...Ch. 9 - Consider a Mach 3 flow at 1 atm pressure initially...Ch. 9 - The purpose of this problem is to explain what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The flow just upstream of a normal shock wave is given by p1 = 1 atm,T1 = 288 K, and M1 = 2.6. Calculate the following properties justdownstream of the shock: p2, T2, ρ2, M2, p0,2, T0,2, and the change inentropy across the shock.arrow_forwardA sample of steam is at a pressure of 300 kPa (x=0.75). Solve for its entropy.arrow_forwardDensity of air at the exit nozzle?arrow_forward
- An engineer is designing a subsonic wind tunnel. The test section is to have a cross-sectional area of 4 m2 and an airspeed of 60 m/s. The air density is 1.2 kg/m3. The area of the tunnel exit is 10 m2. The head loss through the tunnel is given by hL=0.025VT2/2g, where VT is the airspeed in the test section. Calculate the power needed to operate the wind tunnel. Hint: Assume negligible energy loss for the flow approaching the tunnel in region A, and assume atmospheric pressure at the outlet section of the tunnel. Assume α = 1.0 at all locations.arrow_forwardThe tank is filled with air at 20°C and 139 kPa in stationary condition. Air is leaving the tank with flowing in a nozzle under steady-state condition. The flow is under isentropic and subsonic condition. The nozzle exit area is 18,59 cm?. After leaving from the nozzle, air strikes a vertical plate. Define the force [N] required to hold the plate stationary. (Note: Assume Pe=1 atm, kair=1.4, Rair=287 J/kg.K) Pte F Yanıt:arrow_forward3. Assume a supersonic flow with M=2, P=1 atm, and T=288 K that is deflected via 15° at a compression corner. Determine M, P, T, as well as PO and TO behind the associated oblique shock wave.arrow_forward
- Gas flowing through a diverging nozzle has at inlet section a temperature of 20 °C, pressure 120 kN/m? and velocity 300 m/s. At the outlet of the nozzle the velocity has fallen to 100 m/s. Assuming an adiabatic flow, what is the values of outlet pressure, temperature, internal energy and specific enthalpy at outlet section. Take y = 1.333 and Cv= 0.86 kJ/kg K.arrow_forwardAn aircraft where the ambient parameters are density = 0.785 kg/m^3, p= 0.50 atm, and velocity = 350 m/s. At a point on the airfoil surface, the pressure is 0.40 atm. Assuming isentropic flow, calculate the velocity at that point.arrow_forwardIn your own words, write a summary of the differences between incompressible flow, subsonic flow, and supersonic flow.arrow_forward
- Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area of 2 m2 and a test-section cross-sectional area of 0.5 m2. The pressure in the test section is 1 atm. Assume constant density equal to standard sea level density, calculate the pressure (in Pa) required in the reservoir necessary to achieve a flow velocity of 40 m/s in the test section.arrow_forwardConsider the isentropic flow through a supersonic wind-tunnel nozzle. The reservoir properties are T0= 500 K and p0 = 10 atm. If p (corresponds to your assigned altitude) at the nozzle exit, calculate the exit temperature and density.ASSIGNED ALTITUDE = 9522 ftarrow_forwardConsider a circular cylinder in a hypersonic flow, with its axisperpendicular to the flow. Let φ be the angle measured between radiidrawn to the leading edge (the stagnation point) and to any arbitrary pointon the cylinder. The pressure coefficient distribution along the cylindricalsurface is given by Cp = 2 cos2 φ for 0 ≤ φ ≤ π/2 and 3π/2 ≤ φ ≤ 2πand Cp = 0 for π/2 ≤ φ ≤ 3π/2. Calculate the drag coefficient for thecylinder, based on projected frontal area of the cylinder.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license