Consider a Mach 4 airflow at a pressure of 1 atm. We wish to slow this flow to subsonic speed through a system of shock waves with as small a loss in total pressure as possible. Compare the loss in total pressure for the following three shock systems:
a. A single normal shock wave
b. An oblique shock with a deflection angle of
c. An oblique shock with a deflection angle of
From the results of (a), (b), and (c), what can you induce about the efficiency of the various shock systems?
(a)
The comparison in total pressure loss for the single normal shock wave.
Answer to Problem 9.8P
The loss in pressure is
Explanation of Solution
Given:
The Mach number is
The pressure is
Formula used:
The expression for
The expression for
The expression for loss in pressure is given as,
Calculation:
The pressure
The pressure
The loss in pressure can be calculated as,
Conclusion:
Therefore, the loss in pressure is
(b)
The comparison in pressure for an oblique shock with a deflection angle of
Answer to Problem 9.8P
The loss in pressure is
Explanation of Solution
Given:
The Mach number is
The pressure is
The deflection angle of oblique shock wave is
Formula used:
The expression for
The expression for
The expression for
The expression for loss in pressure is given as,
Calculation:
From
Figure (1)
The Mach number
The pressure ratio for Mach number
From appendix B
The Mach number
The pressure ratio for Mach number
The pressure
The pressure loss can be calculated as,
Conclusion:
Therefore, the loss in pressure is
(c)
The comparison in pressure for the an oblique shock with a deflection angle of
Answer to Problem 9.8P
The loss in pressure is
Explanation of Solution
Given:
The Mach number is
The pressure is
The deflection angle of second oblique shock wave is
Formula used:
The expression for the Mach number
The expression for Mach number
The expression for the pressure
The expression for loss in pressure is given as,
Calculation:
From
Figure (2)
The Mach number
The pressure ratio for Mach number from appendix B is given as,
Refer to appendix B
The Mach number
The pressure ratio for Mach number
The pressure
The pressure loss can be calculated as,
From a, b and c it is clear that the most efficient way to decrease supersonic flow to subsonic flow is through a combination of supersonic diffuser and then normal shock wave at the end.
Conclusion:
Therefore, the loss in pressure is
Want to see more full solutions like this?
Chapter 9 Solutions
Fundamentals of Aerodynamics
- The entropy increase across a normal shock wave is 199.5 J/(kg · K). What is the upstream Mach number?PLease show step by step solns for better understanding thank you!arrow_forwardThe pressure ratio across a normal shock wave in air is 4.5. What are the Mach numbers in front of and behind the wave? What are the density and temperature ratios across the wave?arrow_forwardA piston moves along a tube containing air at an initial sound speed of 330 m/s. When the piston velocity is 250 m/s, it drives a shock wave which propagates at a velocity of 500 m/s. When the piston velocity is 100 m/s, it drives a shock at 400 m/s. Use the hypersonic equivalence principle to calculate the shock angles (in degrees) on a flat plate: At an incidence of 6 degrees and a Mach number of 7.2arrow_forward
- QUESTION 1 The Mach number behind a normal shock wave is 0.4752. What is the Mach number infront of the wave?arrow_forwardCan the Mach number of a fluid be greater than 1 after a normal shock wave? Explain.arrow_forwardThe entropy increase across a normal shock wave is 199.5 J/(kg · K). Whatis the upstream Mach number?arrow_forward
- The Pitot tube on a supersonic aircraft (see the Video) cruising at an altitude of 25000 ft senses a stagnation pressure of 15.0 psia. If the atmosphere is considered standard, determine (a) the Mach number of the aircraft, (b) the airspeed. A shock wave is present just upstream of the probe impact hole. (a) Ma = (b) V= ft/sarrow_forwardThe Mach number behind a normal shock wave is 0.4752. What is the Mach number in front of the wave? What are the density, pressure, and temperature ratios across the shock?arrow_forwardThe pressure upstream of a normal shock wave is 1 atm. The pressure and temperature downstream of the wave are 10.33 atm and 1,390 °R, respectively. Calculate the Mach number and temperature upstream of the wave.arrow_forward
- What is the Mach of airflow with 150 m/s at a pressure of 0.95 atm and a Density of 1.15 kg/m^3?arrow_forwardAir flows isentropically at a rate of 1.3 kg/s from a large chamber through a convergent- divergent duct and leave to the outlet at Mach number 2.72. The air velocity, pressure OUTM EXAMINATION SESSION 2020/2021 (a) Sketch the system and label all components with subsonic/supersonic and UTM N 2020/2021 TM FINAL EXAMIN 2020/2021 answer. 2020/2021 st TION STAL EXAMINATION SEMESTAR I, SESSJO , SESSIOVON 3, SERIONON Esto ON b/202 2020/202 and temperature at a location somewhere along the system were found to be 900 m/s, OUTM 150 kPa and 60°C, respectively. FINAL EXAMINATIC SEMESTER IL SESSION 2025/202 RATION 2020/2021 FINAL EXAMINA BEMENTER I SESSION 2020/202 diffuser/nozzle according to the effect of area change. Justify your ALE eSTER R, SESSION 202b/202 (b) Determine the pressure and temperature of the air in the large chamber, the area at throat, and the velocity at outlet. zb/202arrow_forwardI need the answer as soon as possiblearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY