(a)
Interpretation:
The calculation of the number of moles and mass of
(a)
Explanation of Solution
Where, R is the universal gas constant and its values changes in accordance with the units of pressure, volume and temperature.
The conversion factor of temperature from Celsius to Kelvin is as follows:
For
The conversion factor that is used to convert pressure value from
For
Recall equation (1),
Substitute
The mass of gas is calculated using the given formula:
Here,
Substitute
(b)
Interpretation:
The calculation of the number of moles and mass of
(b)
Explanation of Solution
The conversion factor of temperature from Celsius to Kelvin is as follows:
For
The conversion factor that is used to convert pressure value from
For
Recall equation (1),
Substitute
The mass of gas is calculated using the given formula:
Here,
Substitute
(c)
Interpretation:
The calculation of the number of moles and mass of
(c)
Explanation of Solution
The conversion factor of temperature from Celsius to Kelvin is as follows:
For
The conversion factor that is used to convert pressure value from
For
Recall equation (1),
Substitute
The mass of gas is calculated using the given formula:
Here,
Substitute
Want to see more full solutions like this?
Chapter 9 Solutions
Introduction to Chemistry
- 47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forwardA sample of natural gas is 85.2% methane, CH4, and 14.8% ethane, C2H6, by mass. What is the density of this mixture at 18C and 771 mmHg?arrow_forwardWhat is the value of the ideal gas constant R if the volume is specified in milliliters rather than liters?arrow_forward
- A mixture at 33 °C contains H2at 325 torr. N;at 475 tore and O2at 650. torr. What is the total pressure of the gases in the system? Which gas contains the greatest number of moles?arrow_forward109 An ore sample with a mass of 670 kg contains 27.7% magnesium carbonate, MgCO3. If all of the magnesium carbonate in this ore sample is decomposed to form carbon dioxide, describe how to determine what volume of CO2 is evolved during the process. What would have to be measured to predict the needed volume in advance?arrow_forwardA 1.26-g sample of a gas occupies a volume of 544 mL at 27 C and 744 torr? What is the molecular formula and name of the gas if its empirical formula is C2H5.arrow_forward
- As 1 g of (lie radioactive element radium decays over 1 year. k produces 1.161018 alpha particles (helium nuclei). Each alpha particle becomes an atom of helium gas. What is the pressure ¡n pascal of the helium gas produced if it occupies a volume of 125 mL at a temperature of 25 C?arrow_forwardA 19.9-mL volume of a hydrochloric acid solution reacts completely with a solid sample of magnesium carbonate, producing 183 mL of CO2 that is collected over water at 24.0C and 738 torr total pressure. The reaction is 2HCl(aq)+MgCO3(s)CO2(g)+H2O(l)+MgCl2(aq) What is the molarity of the HCl solution?arrow_forwardA typical barometric pressure in Kansas City is 740 torr. What is this pressure in atmospheres, in millimeters of mercury, and in kilopascals?arrow_forward
- A 21.4-mL volume of hydrochloric acid reacts completely with a solid sample of MgCO3. The reaction is 2HCl(aq)+MgCO3(s)CO2(g)+H2O(l)+MgCl2(aq) The volume of CO2 formed is 159 mL at 23C and 731 mmHg. What is the molarity of the HCl solution?arrow_forwardA 39.6-mL sample of gas is trapped in a syringe and heated from 27 C to 127 C. What is the new volume (in mL) in the syringe if the pressure is constant?arrow_forwardIn an experiment in a general chemistry laboratory, a student collected a sample of a gas over water. The volume of the gas was 265 mL at a pressure of 753 torr and a temperature of 27 C. The mass of the gas was 0.472 g. What was the molar mass of the gas?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co